Review of cell-complexes
Construction.
(1) Start with a discrete set X° whose points are o-cells.
(2) Inductively build x^{n} from $x^{n-1} b_{y}$ attaching n-cells e_{α}^{n} via maps $\varphi_{\alpha}: s^{n-1} \longrightarrow x^{n-1}$. As a quotient space.

$$
X^{n}=x^{n-1} \sqcup_{\alpha} D_{\alpha} / x \sim \varphi_{\alpha}(x)
$$

$\forall \quad x \in \partial D^{n} \alpha$.
(3) If the process stops at a finite stage, then $x=x^{n}$, for $n<\infty$.

Otherwise, it can continue indefinitely, setting $X=U_{n} X^{n}$. A space X constructed in this manner is called a cell-complex (or cw-complex).

Examples
(a) A 1-dimensional cell-complex is called a graph.

(b) $S^{n}=0$-cell $u n$-cell, where the n-cell is attached by a constant map $S^{n-1} \longrightarrow e^{0}$.
(C)

$$
\begin{aligned}
& \mathbb{R} P^{n}=S^{n} / x \sim-x \\
&=D^{n} / x \sim-x, \text { for } x \in \partial D^{n} \\
&=S^{n-1}
\end{aligned}
$$

Since $S^{n-1} / x \sim-x=\mathbb{R} P^{n-1}$, we have $\mathbb{R} P^{n}=\mathbb{R} P^{n-1} u e^{n}$ with the quotient projection:

$$
\begin{aligned}
& S^{n-1} \longrightarrow \mathbb{R}^{n-1} . \\
& \mathbb{R} P^{\infty}=\bigcup_{n} \mathbb{R} P^{n} .
\end{aligned}
$$

A subcomplex is a closed subspace $A \subset X$ that is a union of cells of X.
Example
(a) S^{n} is a subcomplex of S^{n+1} by regarding
S^{n} as the equator of S^{n+1} and then attaching $2-(n+1)$ cells via the identity map $\partial D^{n+1}\left(=S^{n}\right) \longrightarrow S^{n}$. $S^{\infty}=\bigcup_{n} S^{n}$.

Homology
Why do we need homology?
(a) $\pi_{1}(x)=$ Homotopy classes of maps $S^{\prime} \longrightarrow X$ can (i.e. homotopy classes of loops
based at a point) based at a point) can only be used to study
objects of dimension up to 2 .
For example, it cannot be used to distinguish between S^{n}, for $n \geqslant 2$.
(b) The higher-dimensional analogue $\Pi_{n}(x)$ - homotopy classes of maps $S^{n} \rightarrow X$ is incredibly hard to Compute in general.
It is known that $\pi_{i}\left(s^{n}\right)=0$ for $i<n$ and \mathbb{Z} for $i=n$.
(c) The homology groups $H_{i}(x)$ are easier to compute and depend only on the $(n+1)$-skeleton Also,

$$
\operatorname{Hi}\left(s^{n}\right) \cong \begin{cases}\pi_{i}\left(s^{n}\right), & \text { for } i \leq n \\ 0, & \text { for } i>n\end{cases}
$$

Simplical homology
Defn. An n-simplex is the smallest convex set in $\mathbb{T} m$ containing $n+1$ points v_{0}, \ldots, v_{n} that do not lie in a hyperplane of dimension $<n$.
(Equivalently, $v_{1}-v_{0}, \ldots, v_{n}-v_{0}$ are linearly independent)

The points $v i$ are the vertices of the simplex and the simplex will be denoted by $[v 0, \ldots, v n]$.

Examples
(a) o-simplex: V_{0}
(b) 1-simplex:
(c) 2-simplex:

(d) A standard n-simplex in \mathbb{R}^{m} will be denoted by:

$$
\Delta^{n}=\left\{\left(t_{0}, \ldots, t_{n}\right) \in \mathbb{R}^{n+1} \left\lvert\, \sum_{i=1}^{t_{i}=1} \begin{array}{l}
\text { and } \\
t_{i} \geqslant 0
\end{array}\right.\right\}
$$

Remark (a)For the purposes of homology, it is essential that there is an ordering of the vertices.
(b) This, in turn, induces an orientation on the edges.
(c) There is an induced canonical homeomorphism from the standard simple Δ^{n} onto any other n-simplex $\left[v_{0}, \ldots, v_{n}\right]$ preserving order of vertices, namely:

$$
\left(t_{0}, \ldots, t_{n}\right) \longmapsto \sum_{i} t_{i} v_{i}
$$

The $t i$ are called the barycentric coordinates of the point $V \Sigma_{t_{i}} v_{i}$ in $\left[v_{0}, \ldots, v_{n}\right]$.

Defn. A face of a simplex is the subsimplex with vertices any nonempty subset of the vic.
Remark. Vertices of a face will always be ordered according to the order of the larger simplex.
Defer. A Δ-complex is the quotient space of a collection of disjoint simplices Δ^{n} of various dimensions obtained by identifying certain of their faces via canonical linear homos
that preserve the ordering of vertices.

Remark. The data determining a A-complex is purely comb inatorial (i.e. building something from a kit of precut parts that come together following instructions).

Example.
(a) T: Torus

(b) $\mathbb{R} P^{2}$

(c) Klein-boltle

(d)

Remark
(a) As the orientation of the various edges in the boundary of each n-simplex is related to the $\left[v_{0}, \ldots, v_{n}\right]$, no 2 -simplex has its edges oriented cyclically.
(b) Since identification preserves orientation, no two points in the interior are identified.

Defn. We define $\Delta_{n}(x)$ be the free abelian group with basis the open n-simplices e_{α}^{n} of X.

In other words,
$\Delta_{n}(x) \cong \oplus_{i=1}^{k_{n}} \mathbb{Z}$. where K_{n} - number of n-simplies in X.

Remark. Note that the elements of $\Delta_{n}(x)$ are finite formal sums $\sum_{\alpha} n_{\alpha} e_{\alpha}^{n}$ called n-chains.

Defn. We define boundary $\partial_{n}(\sigma)$ of an n-simplex $\sigma=\left[v_{0}, \ldots, v_{n}\right]$ to be:

$$
\left.\partial_{n}(\sigma)=\left.\sum_{i=0}^{n}(-1)^{i} \sigma\right|_{\left[v_{0}, \ldots, \hat{v}_{i}\right.} \ldots, v_{n}\right] .
$$

Where A over v_{i} indicates the deletion of the vertex v_{i}.

Example.
(a) 1-simplex:

$$
\gamma_{1}\left(\left[v_{0}, v_{1}\right]\right)=v_{1}-v_{0}
$$

(b) 2-simplex:

$$
\begin{array}{r}
\gamma_{2}\left(\left[v_{0}, v_{1}, v_{2}\right]\right)=\left[v_{1}, v_{2}\right]-\left[v_{0}, v_{2}\right] \\
+\left[v_{0}, v_{1}\right]
\end{array}
$$

(C) 3-simplex

$$
\begin{aligned}
& \partial_{3}\left(\left[v_{0}, v_{1}, v_{2}, v_{3}\right]\right) \\
& =\left[v_{1}, v_{2}, v_{3}\right]-\left[v_{0}, v_{2}, v_{3}\right] \\
& +\left[v_{0}, v_{1}, v_{3}\right]-\left[v_{0}, v_{1}, v_{3}\right] .
\end{aligned}
$$

Defn. The notion of boundary of an n-simplex generalizes to a boundary homomorphism $\partial_{n}: \Delta_{n}(x) \longrightarrow \Delta_{n-1}(x)$ on n-chains defined as follows. Given $\sigma=\sum_{\alpha} n_{\alpha} \sigma_{\alpha} \in \Delta_{n}(x)$, where $\sigma_{\alpha}=\left[v_{0}{ }^{\alpha}, \ldots, v_{n}{ }^{\alpha}\right]$, we have:

$$
\begin{aligned}
& \sigma_{\alpha}=\left[v_{0}^{\alpha}, \ldots, v_{n}^{\alpha}\right], \text { we have: } \\
& \partial_{n}(\sigma)=\left.\sum_{\alpha} n \alpha \sum_{i=0}^{n}(-1)^{i} \sigma_{\alpha}\right|_{\left[v_{0}^{\alpha}, \ldots, v_{i}^{\alpha}, \ldots v_{n}^{\alpha}\right] .} .
\end{aligned}
$$

Remark. Note that ∂_{n} is indeed a homomorphism. (Check!)
Lemma. The composition

$$
\Delta_{n}(x) \xrightarrow{\partial n} \Delta_{n-1}(x) \xrightarrow{\partial_{n-1}} \Delta_{n-2}(x)
$$

is zero.

Proof. It suffices to show for the n-simplices. For an n-simplex $\sigma=\left[v_{0}, \ldots, v_{n}\right]$,

$$
\left.\partial_{n}(\sigma)=\left.\sum_{i}(-1)^{i} \sigma\right|_{\left[v_{0}, \ldots, v_{i}\right.}, \ldots v_{n}\right]
$$

Then:

$$
\begin{aligned}
\partial_{n-1} & \left(\partial_{n}(\sigma)\right)_{0} \\
= & \sum_{j<i}(-1)^{i}(-1)^{j} \sigma \mid\left[v_{0}, \ldots, \hat{v}_{j}, \ldots, \hat{v}_{i}, \ldots, v_{n}\right] \\
& +\sum_{j>i}(-1)^{i}(-1)^{j-1} \sigma \mid\left[v_{0}, \ldots, \hat{v}_{i}, \ldots, \hat{v}_{j}, \ldots, v_{n}\right] \\
& =0
\end{aligned}
$$

Remark. An immediate consequence of the lemma is:

$$
\operatorname{Im}\left(\partial_{n}\right)<\operatorname{Ker}\left(\partial_{n-1}\right)
$$

Thus, we have a sequence

$$
\begin{aligned}
& \cdots C_{n+1}(x) \xrightarrow{\partial \partial_{n+1}} C_{n}(x) \xrightarrow{\partial n} C_{n-1}(x) \rightarrow \cdots \\
& \cdots C_{1}(x) \xrightarrow{\partial_{1}} C_{0}(x) \xrightarrow{\partial \partial_{0}} 0
\end{aligned}
$$

of abelian groups with

$$
\partial_{n} \partial_{n+1}=0 \quad \forall n \text {. }
$$

Such a sequence is called a chain complex.

Define. We define the $n^{\text {th }}$ simplicial homology group $H_{n}^{\Delta}(x)$ of x by:

$$
H_{n}^{\Delta}(x)=\operatorname{Ker}\left(\partial_{n}\right) / \operatorname{Im}_{m}\left(\partial_{n+1}\right)^{\prime}
$$

where $C_{n}(x)=\Delta_{n}(x), \forall n$.

The elements of $\operatorname{Ker}\left(\partial_{n}\right)$ are called cycles and the elements of $\operatorname{Im}\left(\partial_{n+1}\right)$ are called boundaries. Then elements of $H_{n}(x)$ are called homology Classes.

Examples
(a) $x=s^{\prime}$

$$
\begin{aligned}
& \Delta_{0}\left(s^{\prime}\right)=\Delta^{\prime}\left(s^{\prime}\right)=\mathbb{Z}^{v} \\
& \langle e\rangle\langle\nu\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \partial_{1}(e)=v-v=0 \Rightarrow \partial_{1}=0 \\
& \partial_{0}=0
\end{aligned}
$$

$$
\begin{aligned}
& H_{0}^{\Delta}(x)=\frac{\operatorname{Ker}\left(\partial_{0}\right)}{\operatorname{Im}\left(\partial_{1}\right)}=\frac{\mathbb{Z}}{\{03} \cong \mathbb{Z} \\
& H_{1} \Delta(x)=\frac{\operatorname{Ker}\left(\partial_{1}\right)}{\operatorname{Im}\left(\partial_{2}\right)}=\frac{\mathbb{Z}}{\left\{_{03}\right.} \cong \mathbb{Z}
\end{aligned}
$$

(b) $\quad x=T$

$$
\begin{aligned}
& \Delta_{0}(x)=\langle v\rangle \cong \mathbb{Z} \\
& \Delta_{1}(x)=\langle a, b\rangle \cong \mathbb{Z} \oplus \mathbb{Z}^{v} \\
& \Delta_{2}(x)=\langle v, L\rangle \cong \mathbb{Z} \oplus \mathbb{Z}
\end{aligned}
$$

Chain complex

$$
\begin{aligned}
& \langle u, L\rangle\langle a, b, c\rangle\langle v\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \partial_{0}=0 \\
& \partial_{1}(a)=\partial_{1}(b)=\partial_{1}(c)=0 \Rightarrow \partial_{1}=0 \\
& \partial_{2}(U)=a+b-c, \partial_{2}(L)=b+a-c
\end{aligned}
$$

$$
\begin{aligned}
H_{0}^{\Delta}(x)= & \frac{\operatorname{Ker}\left(\partial_{0}\right)}{\operatorname{Im}\left(\partial_{1}\right)}=\frac{\mathbb{Z}}{\{0\}}=\mathbb{Z} \\
H_{1}^{\Delta}(x)= & \frac{\operatorname{Ker}\left(\partial_{1}\right)}{\operatorname{Im}\left(\partial_{2}\right)}=\frac{\langle a, b, c\rangle}{\langle a+b-c\rangle} \\
& =\frac{\langle a, b, a+b-c\rangle}{\langle a+b-c\rangle} \\
& \cong \mathbb{Z}^{2}
\end{aligned} \quad \begin{aligned}
H_{2}^{\Delta}(x)= & \frac{\operatorname{Ker}\left(\partial_{2}\right)}{\operatorname{Im}\left(\partial_{3}\right)} \\
\operatorname{Ker}\left(\partial_{2}\right)= & \left\{p U+q L \mid \partial_{2}(p U+q L)=0\right\} \\
= & \{p U+q L \mid(p+q)(a+b-c)=0\} \\
= & \{p U+q L \mid p=-q\} \\
= & \langle U-L\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{\operatorname{Ker}\left(\partial_{2}\right)}{\operatorname{Im}\left(\partial_{3}\right)}=\frac{\langle U-L\rangle}{\{0\}} \cong \mathbb{Z} \\
& \text { (c) } X=\mathbb{R} P^{2} \\
& \Delta_{0}(x)=\langle v, w\rangle=\mathbb{Z}^{2} \\
& \Delta_{1}(x)=\langle a, b, c\rangle=\mathbb{Z}^{3} \\
& \Delta_{2}(x)=\langle U, L\rangle=\mathbb{Z}^{2} \\
& \langle u, L\rangle\langle a, b, c\rangle\langle v, w\rangle \\
& \ldots \rightarrow 0 \longrightarrow \mathbb{Z}^{2} \xrightarrow{\partial_{2}} \mathbb{Z}^{\prime \prime} \xrightarrow{\partial_{1}} \mathbb{Z}^{\prime \prime} \xrightarrow{\partial_{0}} 0 \\
& \partial_{0}=0 \\
& \partial_{1}(a)=\partial_{1}(b)=w-v, \quad \partial_{1}(c)=0 \\
& \partial_{2}(u)=c+b-a, \partial_{2}(v)=c+a-b \\
& H_{0}^{\Delta}(x)=\frac{\operatorname{Ker}(\partial 0)}{\operatorname{Im}\left(\partial_{1}\right)}=\frac{\langle v, w\rangle}{\langle w-v\rangle}=\frac{\langle v, v-w\rangle}{\langle w-v\rangle} \\
& \cong \mathbb{Z} \\
& H_{1}^{\Delta}(x)=\frac{\operatorname{Ker}\left(\partial_{1}\right)}{\operatorname{Im}\left(\partial_{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Ker}\left(\partial_{1}\right)= & \left\{p a+q b+r c \mid \partial_{1}(p a+q b+r c)=0\right\} \\
= & \{p a+q b+r c \mid(p+q)(w-v)=0\} \\
= & \{p a+q b+r c \mid p=-q\} \\
= & \{p a-p b+r c\}=\langle a-b, c\rangle \\
& \cong \mathbb{Z}^{2} \\
\operatorname{Im}\left(\partial_{2}\right)= & \langle c+b-a, c+a-b\rangle \\
& =\langle c+a-b, 2 c\rangle \\
\frac{\operatorname{Ker}\left(\partial_{1}\right)}{\operatorname{Im}\left(\partial_{2}\right)}= & \frac{\langle a-b, c\rangle}{\langle c+a-b, 2 c\rangle}=\langle c+a-b, c\rangle \\
& \cong \mathbb{Z} / 2 \mathbb{Z}=\mathbb{Z}_{2} \\
& \operatorname{Ker}\left(\partial_{2}\right) \\
H_{2}^{\Delta}(x)= & \operatorname{Im}\left(\partial_{3}\right)
\end{aligned}
$$

Now, $\partial_{2}(u)=c+b-a$

$$
\partial_{2}(L)=c+a-b
$$

$\Rightarrow \partial_{2}$ is injective $\Rightarrow \operatorname{Ker}\left(\partial_{2}\right)=0$

$$
\Rightarrow \frac{\operatorname{Ker}\left(\partial_{2}\right)}{\operatorname{Im}\left(\partial_{3}\right)}=\frac{\mathbb{Z}^{2}}{\{0\}} \cong \mathbb{Z}^{2}
$$

(d) $S^{n}-2$ copies of $\Delta^{n}(U, L)$ glued along the boundary by the identity.

$$
H_{n}^{\Delta}\left(s^{n}\right)=\frac{\operatorname{Ker}\left(\partial_{n}\right)}{\operatorname{Im}\left(\partial_{n+1}\right)}=\frac{\langle v-L\rangle}{\{0\}}
$$

9^{2}

$\simeq \mathbb{Z}$

$$
\begin{aligned}
& \Delta^{0}\left(s^{2}\right)=\langle v, w, x\rangle=\mathbb{Z}^{3} \\
& \Delta^{\prime}\left(s^{2}\right)=\langle a, b, c\rangle=\mathbb{Z}^{3} \\
& \Delta^{2}\left(s^{2}\right)=\langle u, L\rangle=\mathbb{Z}^{2} \\
& \cdots \rightarrow 0 \xrightarrow{\partial_{3}} \mathbb{Z}^{2 \partial_{2}} \mathbb{Z}^{3} \xrightarrow{\partial_{1}} \mathbb{Z}^{3} \xrightarrow{\partial_{u}} 0 \\
& \partial_{0}=0 \\
& \partial_{1}(a)=w-v, \partial_{1}(b)=x-w, \partial_{1}(c)=x-v \\
& \partial_{2}(u)=\partial_{2}(L)=a+b-c \\
& \partial_{3}=0 \\
& H_{0}^{\Delta}\left(s^{2}\right)=\frac{\operatorname{Ker}\left(\partial_{0}\right)}{\operatorname{Im}\left(\partial_{1}\right)}=\frac{\langle u, v, x\rangle}{\langle u-v, v-x, x-u\rangle} \cong \\
& \cong \frac{\mathbb{Z}^{3}}{\mathbb{Z}^{3}} \cong\{0\} \\
& H_{1}^{\Delta}\left(s^{2}\right)=\frac{\operatorname{Ker}\left(\partial_{1}\right)}{\operatorname{Im}\left(\partial_{2}\right)} \cong \frac{\{0\}}{\operatorname{Im}\left(\partial_{2}\right)} \cong\{0\}
\end{aligned}
$$

∂_{1} is injective

$$
\begin{aligned}
H_{2}^{\Delta}\left(S^{2}\right) & =\frac{\operatorname{Ker}\left(\partial_{2}\right)}{\operatorname{Im}\left(\partial_{3}\right)}=\frac{\mathbb{Z}}{\{0\}} \cong \mathbb{Z} \\
\operatorname{Ker}\left(\partial_{2}\right) & =\left\{p U+q L \mid \partial_{2}(p U+q L)=0\right\} \\
& =\{p U+q L \mid(p+q)(a+b-c)=0\} \\
& =\{p U+q L \mid p=-q\} \\
& =\langle U-L\rangle \cong \mathbb{Z}
\end{aligned}
$$

Singular homology
Deft. A singular n-simplex is a continuous map $\sigma: \Delta^{n} \longrightarrow X$.

- We define $C_{n}(x)$ to be the free abelian group generated by the singular n-simplices in X.
- The elements of $C_{n}(x)$ are called singular n-chains, which are finite formal sums $\sum_{i} n_{i} \sigma_{i}$ for $n i \in \mathbb{Z}$ and $\sigma_{i}: \Delta^{n} \xrightarrow{i} X$.
- We define the boundary map

$$
\begin{aligned}
& \text { We define the } \partial_{n} \cdot C_{n}(x) \xrightarrow{ } \rightarrow C_{n}(x) \text { by } \\
& \partial_{n}(\sigma)=\sum_{i}(-1)^{i} \sigma \mid\left[v_{0}, \ldots, \hat{v}_{i}, \ldots v_{n}\right]
\end{aligned}
$$

Here $\sigma \mid\left[v_{0}, \ldots, \hat{v}_{i}, \ldots v_{n}\right]$ is regarded as a $\operatorname{map} \Delta^{n-1} \longrightarrow X$ (i.e. a singular $(n-1)$-simplex).
Lemma: $\partial^{2}=0$ (i.e $\partial_{n 0} \partial_{n+1}=0$).
Defn. We define the singular homology group by

$$
H_{n}(x)=\operatorname{Ker}(\partial n) / \operatorname{Im}(\partial n+1)
$$

Remark (a) Its evident from the definition that homeomorphic spaces have isomorphic singular homology groups.
(b) $H_{n}(x)$ can also be viewed as a special case of $H_{n}^{\Delta}(x)$ in the following manner. Let $s(x)$ be the Δ-complex with one n-simplex $\Delta^{n} \sigma$ for each singular simple $\sigma: \Delta^{n} \longrightarrow X_{\text {, }}$ with $\Delta^{n} \sigma$ attached to the $(n-1)$-simplies (of $S(x)$) via the restrictions of σ to $\partial \Delta^{n}$.
Then $H_{n}^{\Delta}(S(x)) \cong H_{n}(x)$.
(c) The elements of $H_{1}(x)$ are represented by collections of oriented loops into x.

Prop. Corresponding to the decomposition of a space X into its path-components X_{α}, \exists an isomorphism

$$
H_{n}(x) \cong \bigoplus_{\alpha} H_{n}\left(x_{\alpha}\right)
$$

Proof. A singular simplex has a path-connected image, so $C_{n}(x)=\bigoplus_{\alpha} C_{n}\left(x_{\alpha}\right)$. Moreover, ∂_{n} preserves this decomposition.

Prop. If X nonempty and path-connected, then $H_{0}(x) \cong \mathbb{Z}$. Hence, for a any space $x, H_{0}(x)$ is a direct sum of \mathbb{Z}_{i}, one for each path component of X.
Proof. Since $r_{0}=0$, we have $H_{0}(x)=C_{0}(x) / \operatorname{Im}_{1} \partial_{1}$
Define $\varepsilon: C_{0}(x) \longrightarrow \mathbb{Z}$ By $\varepsilon\left(\sum_{i} n_{i} \sigma_{i}\right)=\sum_{i} n_{i}$

Note that ε is a hom. which is surjective if $X \neq \varnothing$.
Claim. Ker $\varepsilon=\operatorname{Im} \partial$,
For a singular 1-simplex $\sigma: \Delta^{\prime} \rightarrow X$, we have

$$
\begin{aligned}
& \sigma: \Delta \rightarrow \\
& \varepsilon\left(\partial_{1}(\sigma)\right)= \\
& =\varepsilon\left(\left.\sigma\right|_{\left[v_{1}\right]}-\left.\sigma\right|_{[\mathrm{vo}]}\right) \\
&
\end{aligned}
$$

$$
\Rightarrow \operatorname{Im}\left(\partial_{1}\right) \subset \operatorname{ker}(\varepsilon) .
$$

Now consider $\sigma=\sum_{i} n i \sigma_{i}$ $\sigma \operatorname{Ker}(\varepsilon)$

Then $\varepsilon(\sigma)=\sum n i=0$
Note that σ_{i}^{\prime} are essen. filly points of X.
Fix a basepoint $x_{0} \in X$, and a path $\tau_{i}: I \longrightarrow X$ from x_{0} to $\sigma_{i}\left(v_{0}\right)$.

Then viewing τ_{i} as a $\operatorname{map}\left[v_{0}, v_{1}\right] \rightarrow x$ (i.e. a singular 1-simplex), we have:

$$
\partial \tau_{i}=\sigma_{i}-\sigma_{0}
$$

Hence, $\partial\left(\sum n i \tau_{i}\right)=\sum_{i} n_{i} \sigma_{i}-\sum_{i} n i \sigma_{0}$

$$
=\sum_{i} n_{i} \sigma_{i}
$$

$$
\Rightarrow \sigma=\sum_{i} n_{i} \sigma_{i} \in \operatorname{Im}(\gamma)
$$

Thus, we have $\operatorname{Ker}(\varepsilon) \subset \operatorname{Im}(\partial)$

Prop. If x is a point, then $H_{n}(x)=0$, for $n>0$ and $H_{0}(x) \cong \mathbb{Z}$
Proof. In this case.可b singular n-simple σ_{n} for each n, and

$$
C_{n}(x)=\left\langle\sigma_{n}\right\rangle \cong \mathbb{Z}
$$

Moreover,

$$
\begin{aligned}
\partial_{n}\left(\sigma_{n}\right) & =\sum_{i=0}^{n}(-1)^{i} \sigma_{n}-1 \\
& = \begin{cases}0, & \text { if } n \text { is odd } \\
\sigma_{n-1}, & \text { if } n \text { is even }\end{cases}
\end{aligned}
$$

Thus, we have the chain complex

$$
\ldots \rightarrow \mathbb{Z} \xlongequal{\cong} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \cong \mathbb{Z} \xrightarrow{0} 0
$$

from which our assertion follows.

Defy. Consider the augmented chain complex of a space $x \neq \varnothing$

$$
\cdots \rightarrow C_{2}(x) \xrightarrow{\partial_{2}} C_{1}(x) \xrightarrow{\partial_{1}} C_{0}(x) \rightarrow \mathbb{Z}_{K}^{\varepsilon} 0
$$

The homology associated with this complex are culled reduced homology groups $\widetilde{H}_{n}(x)$.
Lemma. For a space $x \neq \phi$, we have:
(a) $H_{0}(x) \cong \widetilde{H}_{0}(x) \oplus \mathbb{Z}$
(b) $H_{n}(x) \cong \widetilde{H}_{n}(x)$, for $n \geqslant 1$.

Proof (i) Since $\varepsilon \circ \partial_{1}=0$, we have $\operatorname{Im}(01) \subset$ Were. So, ε induces a map $H_{0}(x) \xrightarrow{\bar{\varepsilon}} \mathbb{Z}$. Note that $\operatorname{Ker}(\bar{\varepsilon})=\operatorname{Ker}(\varepsilon) / \operatorname{Im}(0)=,\tilde{H}_{0}(x)$
$\Rightarrow H_{0}(x) / \tilde{H}_{0}(x) \cong \mathbb{Z}$, and the assertion in (i) follows.
(ii) This is apparent by definition.
Note. One can view the extra $\mathbb{\mathbb { Z }}$ in the augmented chain complex as generated by the empty simplex $[\phi]$. Then E becomes the usual boundary map as

$$
\left.\partial\left[v_{0}\right]\right)=\left[\hat{v}_{0}\right]=[\phi] .
$$

Homotopy Invariace
Proposition. A map $f: X \longrightarrow Y$ induces a homomorphism $f_{*}: H_{n}(x) \longrightarrow H_{n}(y)$. for all n.

Proof. Consider the map $f \#: C_{n}(x) \longrightarrow C_{n}(y)$ defined by $\sigma \stackrel{f_{\#}}{\longmapsto}$ foo, for each singular n-simplex $\sigma: \Delta^{n} \longrightarrow X$, an then extended linearly to n-chains by

$$
f_{\#}\left(\sum_{\alpha} n_{\alpha} \sigma_{a}\right)=\sum_{\alpha} n_{\alpha} f_{\#}\left(\sigma_{\alpha}\right) \text {. }
$$

Thus, we obtain the following diagram

$$
\begin{aligned}
& \cdots \rightarrow C_{n+1}(x) \xrightarrow{\partial} C_{n}(x) \xrightarrow{\partial} C_{n-1}(x) \rightarrow \cdots \\
& \text { af\# } \\
& \cdots \rightarrow C_{n+1}(y) \xrightarrow{f_{\#}} C_{n}(y) \xrightarrow{\partial} C_{n-1}(y) \rightarrow \cdots
\end{aligned}
$$

Claim. Each square in this diagram commutes.
Proof. Note that

$$
\begin{aligned}
\left(f_{\#} \circ \partial\right)(\sigma) & \left.=f_{\#}\left(\left.\sum_{i}(-1)^{i} \sigma\right|_{\left[v_{0}, \ldots \hat{v}\right.} \ldots v_{0}\right]\right) \\
& \left.=\left.\sum_{i}(-1)^{i}\left(f_{0} \sigma\right)\right|_{\left[v_{0}, \ldots v_{i} \ldots v_{n}\right]}\right] \\
& =(\partial \circ f \#)(\sigma),
\end{aligned}
$$

which establishes our claim.

Now suppose that $\partial \alpha=0$ (i.e. α is a cycles). Then:

$$
\begin{equation*}
\partial\left(f_{\#}\right)=f_{\#}(\partial \alpha)=0 \tag{1}
\end{equation*}
$$

$\Rightarrow f \#$ takes cycles to cycles
Moreover, since $f \#(\partial \beta)=\partial(f \# \beta)$, $f_{\#}$ takes Boundaries to bound aries.

From (1) \& (2), it follows that $f_{\#}$ indues a homomorphism.

$$
f_{*}: H_{n}(x) \rightarrow H_{n}(y)
$$

Defy. A $f \#: C_{n}(x) \rightarrow C_{n}(y)$ as in the Proposition above is called a chain map.

Lemma
(i) For a composition of maps $x \xrightarrow{g} y \xrightarrow{f} Z$, we have:

$$
(f \circ g) *=f * \circ g *
$$

(ii) For the identity map $i d_{X}: X \longrightarrow X$, we have:

$$
\begin{aligned}
& d_{x}: X \longrightarrow x, i d_{H_{n}}(x) \cdot \square \\
& \left(i d_{x}\right)_{*}=\square
\end{aligned}
$$

Defn. A map $f: x \rightarrow y$ is said to be a homotopy equivalence if there exists a map $g: y \longrightarrow x$ such that $(f \circ g) \simeq i d y$ and $(g \circ f) \simeq i d_{x}$.
Defn. Two spaces $x \& y$ are homotopically equivalent $(x \simeq y)$ if J a nomotopy equivalence $f: x \longrightarrow y$.
Theorem. If two maps
$f, g: x \rightarrow Y$ are homotopic then $f_{*}=g_{*}: H_{n}(x) \rightarrow H_{n}(y)$.

Corollary (a) For a homotopy equivalence $f: X \longrightarrow Y$, we have $f_{*}: H_{n}(x) \rightarrow H_{n}(y)$ is an isomorphism.
(b) If X is contractible (ie. $x \simeq p t$), then $\tilde{H}_{n}(x)=\{0\}$, for all n.
Proof (of Theorem). A vital ingredient in the proof is the subdivision of $\Delta^{n} \times I$ into $(n+1)$-simplices.

Let $\Delta^{n} \times\{0\}=\left[v_{0}, \ldots, v_{n}\right]$ and $\Delta^{n} \times\{1\}=\left[w_{0}, \ldots, w_{n}\right]$, where $v i$ and wi have the same projection under $\Delta^{n} \times I \rightarrow \Delta^{n}$.

Claim. $\Delta^{n} \times I$ is the union of the $(n+1)$-implies
 $\left[v_{0}, \ldots, v_{i}, w_{i}, \ldots \omega_{n}\right]$
Proof (of claim). Note that the n-simplex $\left[v_{0}, \ldots, v_{i}, \omega_{i+1}, \ldots \omega_{n}\right]$ is the graph of the function $\varphi_{i}: \Delta^{n} \longrightarrow I$
defined by $\varphi_{i}\left(t_{0}, \ldots t_{n}\right)=t_{i+1}+\cdots+t_{n}$ in barycentric coordinates.
The simplex $\left[v_{0}, \ldots v_{i}, w_{i}, \ldots, w_{n}\right]$ projects homeomorphically to Δ^{n} under $\Delta^{n} x I \rightarrow \Delta^{n}$.

Since the graph of φ_{i} lies below graph of $\varphi_{i-1}\left(\because \varphi_{i \leqslant} \varphi_{i-1}\right)$, the simplex $\left[v_{0}, \ldots v_{i}, w_{i}, \ldots \omega_{n}\right]$ bounded by these 2 graph is a true $(n+1)$-simplex.
From the inequalities.

$$
0=\varphi_{n} \leqslant \varphi_{n-1} \leqslant \cdots \leqslant \varphi_{-1} \leqslant 1 \text {. }
$$

we see that $\Delta^{n} x I$ is the union of the simplius $\left[v_{0}, \ldots, v_{i}, w_{i}, \ldots, w_{n}\right]$, which proves the claim.

Given a homotopy $F: X \times I \rightarrow Y$ from f to g, we define the prism operators $P: C_{n}(x) \rightarrow \mathrm{C}_{n+1}(y)$
by:

$$
\begin{aligned}
& \text { by: } \\
& P(\sigma)=\left.\sum_{i}(-1)^{i} F_{0}\left(\sigma_{x} i d\right)\right|_{\left[v_{0}, \ldots v_{i}, \omega_{i}, \ldots, \omega_{n}\right]} F_{0}\left(\sigma_{x i d}\right)
\end{aligned}
$$

where $\sigma: \Delta^{n} \longrightarrow x$ and $F_{0}\left(\sigma_{x i d}\right)$ is given by:

$$
\begin{gathered}
\text { by: } \\
\Delta^{n} \times I \xrightarrow{\sigma_{x i d}} \times \times I \xrightarrow{F} y
\end{gathered}
$$

Then with a little bit of effort it can be verified that

$$
\partial P=g_{\#}-f_{\#}-P \partial \text { (Exercise) }
$$

Now, for a cycle $\alpha \in C_{n}(x)$, we have:

$$
g_{\#}(\alpha)-f_{\#}(\alpha)=\partial P(\alpha)
$$

since $\partial \alpha=0$.
$\Rightarrow g_{\#}(\alpha)-f_{\#}(\alpha)$ is a boundary, and hence

$$
g_{*}([\alpha])=f_{*}([\alpha]) \text { in } H_{n}(y)
$$

Relative homology groups
Defn. A sequence of homomorphisms

$$
\begin{aligned}
& \text { orphism } \\
& \cdots \rightarrow A_{n+1} \xrightarrow{\partial_{n+1}} A_{n} \xrightarrow{\partial_{n}} A_{n-1} \rightarrow \rightarrow_{\text {to }}^{\prime(*)}
\end{aligned}
$$

is said to be exact if

$$
\operatorname{Ker}\left(\partial_{n}\right)=\operatorname{Im}(\overline{\partial n+1}) \quad \forall n \text {. }
$$

Remark
(a) Note that $\partial_{n} \partial_{n+1}=0(\Leftrightarrow$ $\operatorname{Im}(\partial n+1)<\operatorname{Ker}(\partial n)) \Rightarrow(*)$ is a chain complex.
(b) Since $\operatorname{Ker}(\partial n) \subset \operatorname{Im}(\partial n+1)$, the associated homology groups are trivial.
hemma.
(i) $O \rightarrow A \xrightarrow{\alpha} B$ is exact iff $\operatorname{Ker}(\alpha)=0$ iff α is injective.
(ii) $A \xrightarrow{\alpha} B \rightarrow 0$ is exact iff
$\operatorname{Im}(\alpha)=B$ iff α is surjective.
(iii) $0 \rightarrow A \xrightarrow{\alpha} B \rightarrow 0$ is exact iff α is an isom.
(iv) $\mathrm{O} \rightarrow \mathrm{A} \xrightarrow{\alpha} \mathrm{B} \xrightarrow{\beta} C \rightarrow 0$ is exact iff α is injective, \mathbb{B} is surjective, and $\operatorname{ker} \beta=\operatorname{Im} \alpha$ $\Leftrightarrow C \cong B / A$.

Defn. Given a space X and a subspace $A \subset X$, let

$$
C_{n}(x, A):=C_{n}(x) / C_{n}(A)
$$

Since $\partial: C_{n}(x) \rightarrow C_{n-1}(x)$ and $\partial\left(C_{n}(A)\right) \subset C_{n-1}(A), \exists a$ chain complex:

$$
\cdots \rightarrow C_{n+1}(x, A) \xrightarrow{\partial} C_{n}(x, A) \xrightarrow{\partial} C_{n-1}(x, A)
$$

called the chain complex of X relative A (or the pair (x, A)) whose associated homology groups are called relative homology groups $H_{n}(x, A)$.

Remark
(i) A class $[\alpha] \in H_{n}(x, A)$ is represented by a cycle $\alpha \in C_{n}(x)$ such that $\partial \alpha \in C_{n-1}(A)$.
(ii) A class $[\alpha] \in H_{n}(x, A)$ is trivial iff $\alpha=\partial \beta+\gamma$, for some $\beta \in C_{n+1}(x)$ and $\gamma \in C_{n}(A)$.
(iii) $H_{n}(x, A)$ (as we will show) measures the difference between the groups $H_{n}(x)$ and $H_{n}(A)$.
Intuitively, it can be viewed as the homology of " x modulo A."

Theorem. For any pair (x, A). there exists a long exact sequence

$$
\begin{aligned}
& \text { Sequence } \\
& \ldots \rightarrow H_{n}(A) \xrightarrow{i *} H n(x) \xrightarrow{j *} \\
& \xrightarrow{\partial} H_{n}(x, A) \\
& H_{n-1}(A) \rightarrow H_{n-1}(x) \\
& \cdots \cdots,
\end{aligned}
$$

where i_{*} is induced by the inclusion map $C_{n}(A) \longrightarrow C_{n}(x)$ and $j *$ is induced by the quotient map $j: C_{n}(x) \rightarrow C_{n}(x) / C_{n}(A)$
Proof. We consider the following commutative diagram:

$$
\begin{aligned}
& \cdots C_{n+1}{ }_{j}^{j}(x, A) \xrightarrow{\partial n+1} C_{n}\left(x_{i}^{j} A\right) \xrightarrow{j \hat{j}} C_{n-1}(x, A) \rightarrow \cdots \\
& \begin{array}{ccc}
1 & J_{c}^{c} & J, \\
0 & 0 & 0
\end{array}
\end{aligned}
$$

The commutativity of this diagram ensures the i_{*} and $j *$ are induced on homology.

Now, we define a boundary map

$$
\bar{\partial}: H_{n}(x, A) \rightarrow H_{n-1}(A)
$$

Consider a class $[c] \in H_{n}(X, A)$
Since $c \in C_{n}(x) / C_{n}(A)$ and j is surjective, \exists a $b \in C_{n}(x)$ Such that $j(b)=c$.
Then $\partial_{n}(b) \in C_{n-1}(x)$. Since

$$
\begin{aligned}
& \text { Then } \partial_{n}(b) \in \partial_{n}(b)=\partial_{n}(j(b))=\partial_{n}(c)=0 \text {, } \\
& j \circ \partial_{n}(b)
\end{aligned}
$$

we have $\partial_{n}(b) \in \operatorname{Ker}(j)$
As $\operatorname{Ker}(j)=\operatorname{Im}(i), \exists a \in C_{n-1}(A)$ such that $i(a)=\partial_{n}(b)$.
Moreover, we have:

$$
\begin{aligned}
& \text { Moreover, we } \\
& i\left(\partial_{n-1}(a)\right)=\partial_{n-1}(i(a))=\gamma_{n-1}\left(\partial_{n}(b)\right. \\
&=0
\end{aligned}
$$

$\Rightarrow \partial_{n-1}(a)=0$ ($\because i$ is injective).

Thus, we define a map

$$
\bar{\partial}: H_{n}(x, A) \longrightarrow H_{n-1}(A)
$$

by $\bar{\delta}([c])=[a]$.
Claim. $\bar{\partial}$ is a well-defined homomorphism.
Proof (of claim).
Well-definedness:
First, we note that a is uniquely determined by ∂b since i is injective.
Suppose we had chosen a different b^{\prime} such that $j\left(b^{\prime}\right)=c$.

Then $j(b)=j\left(b^{\prime}\right)=c \quad \Rightarrow$

$$
\begin{aligned}
& j\left(b^{\prime}-b\right)=0 \Rightarrow b^{\prime}-b^{\prime} \in \operatorname{Ker} j=I_{m i} \\
& \Rightarrow b^{\prime}-b=i(a) \Rightarrow b^{\prime}=b+i(a)
\end{aligned}
$$

Changing b with $b+i(a)$ simply replaces a to a homologous element $a+\partial a^{\prime}$

$$
\begin{aligned}
{\left[i\left(a+\partial_{n-1}\left(a^{\prime}\right)\right)\right.} & =i(a)+i\left(\partial_{n-1}\left(a^{\prime}\right)\right) \\
& \left.=\partial_{n}(b)+\partial_{n-1}\left(i\left(a^{\prime}\right)\right)\right]
\end{aligned}
$$

Similarly a different choice for c within its homology class leaves ∂b and a unchanged (Check!).
Thus $\bar{\partial}$ is well-defined.

Finally, the fact that i, j and ∂_{n} are homomorphisms would imply that $\frac{\partial}{\partial}$ is a homomorphisms.
Exactness of the LES

$$
\begin{aligned}
\cdots \rightarrow H_{n}(A) \xrightarrow{i_{*}} H_{n}(x) \xrightarrow{\rho_{*}} H_{n}(x, A) \\
\xrightarrow{\partial} H_{n-1}(A) \rightarrow \cdots
\end{aligned}
$$

$\operatorname{Im}\left(i_{*}\right) \subset \operatorname{Ker}\left(j_{*}\right)$. This follows from the fact that $(j \circ i)=0$

$$
\left(\Rightarrow j * \circ i_{*}=0\right)
$$

$\operatorname{Im}(j *) \subset \operatorname{Ker}(\bar{\partial})$. By definition. we have $\bar{\partial}=i^{-1} \circ 00 j^{-1} \Rightarrow \bar{\partial} 0 j=i^{-1} \partial=0$ on cycles rep $H_{n}(x, A)$.
$\operatorname{Im}(\bar{\partial}) c \operatorname{Ker}\left(i_{*}\right)$ By definition, we have $i 0 \bar{\partial}=\partial \circ j^{-1}=0$ (on cycles rep $H_{n}(x, A)$.
$\underline{\operatorname{Ker}(j *) C \operatorname{Im}\left(i_{*}\right)}$
Net $[b] \in \operatorname{Ker}(j *)$. Then b is a cycle in $C_{n}(x)$ such that $j(b) \in \partial_{n+1}\left(\frac{C_{n+1}(x)}{C_{n+1}(A)}\right) \Rightarrow$
$\exists c^{\prime} \in \frac{C_{n+1}(x)}{C_{n+1}(A)}$ s.t $\partial_{n+1}\left(c^{\prime}\right)=j(b)$
Moreover, as 0 is surjective, \exists, $b^{\prime} \in C_{n+1}(x)$ such that $j\left(b^{\prime}\right)=c^{\prime}$.
Now, $j\left(b-\partial_{n+1}\left(b^{\prime}\right)\right)$

$$
\begin{aligned}
& =j(b)-j \circ \partial n+1\left(b^{\prime}\right) \\
& =j(b)-\partial n+1\left(j\left(b^{\prime}\right)\right) \\
& =j(b)-j(b)=0
\end{aligned}
$$

$\Rightarrow b-\partial n+1\left(b^{\prime}\right)=i(a)$, for some $a \in C_{n}(A)$.

Now

$$
\begin{aligned}
i\left(\partial_{n}(a)\right) & =\partial_{n}(i(a)) \\
& =\partial_{n}\left(b-\partial n+1\left(b^{\prime}\right)\right) \\
& =\partial_{n}(b)=0
\end{aligned}
$$

$\Rightarrow \partial_{n}(a)=0\left(\because{ }^{0}\right.$ is injective),
Finally, $i_{*}([a])=\left[b-\partial_{n+1}\left(b^{\prime}\right)\right]$

$$
=[b]
$$

$$
\Rightarrow \operatorname{Ker}\left(j_{*}\right) c \operatorname{Im}\left(i_{*}\right)
$$

$\operatorname{Ker}(\bar{\delta}) \subset \operatorname{Im}(j *)$
Let $[c] \in \operatorname{Ker}(\bar{\partial})$. Then as seen earlier, $\bar{\partial}([c])=[a]=[0]$

$$
\Rightarrow a \in \operatorname{Im}\left(\partial_{n}\right) \Rightarrow a=\partial_{n}\left(a^{\prime}\right)
$$ for some $a^{\prime} \in C_{n}(A)$.

Now,

$$
\begin{aligned}
& \text { Now, } \\
& \begin{aligned}
\partial_{n}\left(b-i\left(a^{\prime}\right)\right) & =\partial_{n}(b)-\partial_{n}\left(i\left(a^{\prime}\right)\right) \\
& =\partial_{n}(b)-i\left(\partial_{n}\left(a^{\prime}\right)\right) \\
& =\partial_{n}(b)-i(a) \\
& =0(b y \operatorname{def} n)
\end{aligned}
\end{aligned}
$$

$\Rightarrow b-i\left(a^{\prime}\right)$ is a cycle.
Moreover, $j\left(b-i\left(a^{\prime}\right)\right)$

$$
\begin{gathered}
=j(b)-j\left(i\left(a^{\prime}\right)\right) \\
=j(b)=c \\
\Rightarrow j *\left(\left[b-i\left(a^{\prime}\right)\right]\right)=[c] \\
\Rightarrow \operatorname{ker}(\bar{j}) c \operatorname{Im}(j *)
\end{gathered}
$$

$\operatorname{Ker}(i *) \subset \operatorname{Im}(\partial)$

$$
\cdots \rightarrow H_{n}(x, A) \xrightarrow{\bar{\partial}} H_{n-1}(A) \xrightarrow{i *} H_{n-1}(x)
$$

Let $[a] \in \operatorname{Ker}\left(i_{*}\right)$. Then

$$
i(a) \in \partial_{n}\left(c_{n}(x)\right) \Rightarrow
$$

$i(a)=\partial_{n}(b)$, for some

$$
b \in c_{n}(x)
$$

Then

$$
\begin{aligned}
\operatorname{Ten}(j(b)) & =j\left(\partial_{n}(b)\right) \\
& =j(i(a))=0
\end{aligned}
$$

$\Rightarrow j(b)$ is a cycle.
Thus, $\bar{\partial}(j(b))=[a]$.

Remark. $H_{n}(x, A)$ measures the difference between the groups $H_{n}(x)$ and $H_{n}(A)$.
In particular, if $H_{n}(x, A)$ for all n, then $H_{n}(A) \stackrel{\imath_{*}^{*}}{\underline{\sim}} \ln (x)$
Defn. A space X and a closed subspace $A \subset X$ are said to form a good pair (X, A) if A has a noted in X that deformation retracts onto A.
Theorem. If (X, A) form a good pair of spaces, then 3 a LES:

$$
\begin{aligned}
\rightarrow \tilde{H}_{n}(A) \xrightarrow{i_{*}} \widetilde{H}_{n}(x) & \xrightarrow{\rho_{*}} \widetilde{H}_{n}(x / A) \\
& \xrightarrow{\frac{\partial}{H_{n-1}}(x) \rightarrow \cdots}
\end{aligned}
$$

where i is the inclusion and j is induced the quotient

$$
X \rightarrow X / A
$$

Remark. A cell-complex x and a subcomplex A $C X$ always form a good pair.
Corollary. $\tilde{H}_{n}\left(S^{n}\right) \cong \mathbb{Z}$ and $\tilde{H}_{i}\left(S^{n}\right)=0$, for $i \neq n$.
Proof Consider the CW-pair $\left(D^{n}, S^{n-1}\right)$. From the LES of
reduced homology groups, we have: il

$$
\begin{aligned}
& \text { have }:_{1}^{1} \\
& \rightarrow \tilde{H}_{i}\left(D^{n}\right) \xrightarrow{j *} \tilde{H}_{i}\left(D^{n} / s^{n-1}\right) \xrightarrow{\bar{\partial}} \widetilde{H}_{i}\left(s^{n-1}\right) \\
& \xrightarrow{i *} \widetilde{H}_{i-1}\left(D^{n}\right) \rightarrow \\
& \Rightarrow \tilde{H}_{i}\left(s^{n}\right) \xrightarrow{\bar{\partial}} \widetilde{H}_{i-1}\left(s^{n-1}\right), \text { for }
\end{aligned}
$$ all $i>0$

If $i=n$, then

$$
\begin{array}{r}
\tilde{H}_{i}\left(s^{n}\right) \cong \tilde{H}_{0}\left(s^{0}\right) \cong \mathbb{Z} \\
\left(\because H_{0}\left(s^{0}\right)\right. \\
\cong \mathbb{Z} \oplus \mathbb{Z})
\end{array}
$$

If $n>i$, then:

$$
\tilde{H}_{i}\left(s^{n}\right) \cong \tilde{H}_{0}\left(s^{n-i}\right) \cong\{0\}
$$

If $n<i$, then:

$$
\tilde{H}_{i}\left(s^{n}\right) \cong \tilde{H}_{i-n}\left(s^{0}\right) \cong\{0\}
$$

Corollary (No retraction theorem).
There exists no retraction

$$
D^{n} \rightarrow \partial D^{n}
$$

Proof. Suppose Z a retraction

$$
r: D^{n} \longrightarrow D^{n}{S^{n}}^{n-1} \text {. Then } r_{0} i=i d_{S^{n-1}}
$$

and so the composition

$$
\tilde{H}_{n-1}\left(S^{n-1}\right) \xrightarrow{i_{*}} \tilde{H}_{n-1}\left(D^{n}\right) \xrightarrow{r_{*}} \widetilde{H}_{n-1}\left(s^{n-1}\right)
$$

equals $i d_{\tilde{H}_{n-1}\left(s^{n-1}\right)}=i d_{\mathbb{Z}}$
This is a contradiction as

$$
\tilde{H}_{n-1}\left(D^{n}\right)=0
$$

Corollary (Browner's Fixed Point
Theorem) - Every (continuous) $\operatorname{map} f: D^{n} \rightarrow D^{n}$ has a fixed point.
Proof.
Suppose that $f: D^{n} \longrightarrow D^{n}$ has no fixed. Then the $\operatorname{map} r: D^{n} \longrightarrow S^{n}: v \longmapsto \frac{v-f(v)}{\|v-f(v)\|}$ defines a retraction
Remark. There exists a LES of reduced homology analogous to the LES of homology group. This is obtained by taking the

SES $\quad 0 \rightarrow C_{n}(A) \rightarrow C_{n}(x) \rightarrow C_{n}(x, A)$ in non-negative dimensions and $\vec{\longrightarrow}^{\circ}$ the SES $0 \rightarrow \mathbb{Z} \xrightarrow{i d} \mathbb{Z} \rightarrow 0 \rightarrow 0$ in dimension -1. Sn particular, this would imply that $H_{n}(x, A)$ $=\tilde{H}_{n}(x, A)$ for all n, when $A \neq \phi$.
Example. Consider the LES of reduced homology groups of the pair $\left(x, x_{0}\right)$, where $x_{0} \in X$. We have

$$
\rightarrow \widetilde{H}_{n}\left(x_{0}\right) \rightarrow \widetilde{H}_{n}(x) \rightarrow \widetilde{H}_{n}\left(x, x_{0}\right)
$$

Since $\tilde{H}_{n}\left(x_{0}\right)=0 \quad \forall n$, we have

$$
\tilde{H}_{n}(x) \cong \widetilde{H}_{n}\left(x, x_{0}\right)=H_{n}\left(x, x_{0}\right)
$$

Example By considering the LES of the pair $\left(D^{n}, \partial D^{n}\right)$, we have $H_{i}\left(D^{n}, \partial D^{n}\right) \xrightarrow{\bar{\partial}} \tilde{H}_{i-1}\left(S^{n-1}\right)$ are isomorphisms for all $i>0$. Consequently, we have:

$$
H_{i}\left(D^{n}, \partial D^{n}\right) \cong\left\{\begin{array}{l}
\mathbb{Z}, \text { if } i=n \\
0, \text { otherwise }
\end{array}\right.
$$

Remark
A map $f: x \rightarrow y$ with

$$
\begin{array}{r}
A \text { map } f: x \rightarrow y \\
f(A) \subset B \text { (i.e. } f:(x, A) \longrightarrow(y, B))
\end{array}
$$

induces homs $f_{\#}: C_{n}(x, A) \rightarrow C_{n}(y, B)$. such that:
(a) $f \# \gamma=\partial f \#$ for relative chains
(b) For $g \simeq f$ (via maps of pairs $(x, A) \rightarrow(x, B)$, we have:

$$
\overrightarrow{\partial P+P \partial=g \#-f \#, ~}
$$

Where $P: C_{n}(x, A) \rightarrow C_{n+1}(y, B)$ is the induced prism operator.
Proposition. If two maps fig: $(x, A) \longrightarrow(y, B)$ are homotopic through maps of pairs $(x, A) \rightarrow(y, B)$. then $f_{*}=g_{*}: H_{n}(x, A) \longrightarrow H_{n}(y, B)$.
Proposition. For a triple (x, A, B) of spaces with $B C A C X, \exists$ a LES

$$
\begin{aligned}
& \text { LES } \\
& \cdots H_{n}(A, B) \rightarrow H_{n}(X, B) \longrightarrow H_{n}(x, A) \\
& \longrightarrow H_{n-1}(A, B) \rightarrow \cdots
\end{aligned}
$$

associated with SES

$$
0 \rightarrow C_{n}(A, B) \rightarrow C_{n}(x, B)
$$

Excision
Theorem(Excision). Given subspaces $Z \subset A C X$ such that $Z \subset A^{\circ}$, then the inclusion $(x-z, A-Z)$ $\rightarrow(x, A)$ induces isomorphisms $H_{n}(x-Z, A-Z) \rightarrow H_{n}(x, A)$ for all n. Equivalently, for subspace $A, B \subset X$ such that $X=A^{\circ} \cup B^{\circ}$, the inclusion $(B, A \cap B) C(X, A)$ induces isomorphisms:

$$
\begin{aligned}
& \text { induces isomorphisms: } \\
& H_{n}(B, A \cap B) \rightarrow H_{n}(x, A) \text {, for all } n .
\end{aligned}
$$

Proof. Exercise (May be covered later,'

Proposition. For $\operatorname{good} \operatorname{pairs}(x, A)$ the quotient map $q:(x, A) \rightarrow(x / A, A / A)$ induces isomorphisms

$$
\begin{aligned}
& \text { duce isomorphisms } \\
& q^{*}: H_{n}(X, A) \rightarrow H_{n}(X / A, A / A) \cong \tilde{H}_{n}(x / A)
\end{aligned}
$$ for all n.

Proof. Let V be a nbhd of A that deformation retracts onto X. We have the following commutative diagram.

$$
\begin{aligned}
& H_{n}(x, A) \stackrel{\cong}{\cong} H_{n}(x, V) \stackrel{\cong}{\cong} H_{n}(x-A, V-A)
\end{aligned}
$$

\cong_{1}. Follows from $L E S$ of the triple (x, v, A).

$$
\begin{aligned}
0_{1 \prime}^{\prime} \\
\cdots \rightarrow H_{n}(V, A)
\end{aligned} H_{n}(x, V) \xrightarrow{\cong} H_{n}(x, A) \text { o }
$$

$H_{n}(V, A)=0 \quad \forall n$ as V def rehacts onto A.
N2 Follows from an analogous argument by considering the triple $(X / A, V / A, A / A)$ and the fact that V / A def. ret. onto A / A. $\cong_{3} \cong_{4}$: Follow from Excision Theorem.
$\cong 5$: Since $\left.V\right|_{x-A}$ is a homed, the isomorphism follows.
The assertion now follows from
the commutativity of the diagram
Examples
(a) Let (X, A) be a good pair. at let the cone $C A$ of A be defined by $C A=A \times I / A \times\{0\}$.
Then:

$$
\begin{aligned}
& \tilde{H}_{n}(x \cup C A) \cong H_{n}(x \cup C A, C A)\left[\begin{array}{l}
\text { LES of } \\
\text { pair }(x \cup C A, C A)
\end{array}\right] \\
& \cong H_{n}(x \cup \subset A-2 p \xi, x \cup \subset A-\{p \xi) \\
& \text { [Excision] } \\
& \cong \operatorname{Hn}(x / A)\left[\begin{array}{l}
C A-\Sigma p\} \\
\text { deformation }
\end{array}\right. \\
& \text { reviacts onto } \\
& \text { A] }
\end{aligned}
$$

Example (b) We wish to find the explicit cycles representing $H_{n}\left(D^{n}, \partial D^{n}\right)$. We may view $\left(D^{n}, \partial D^{n}\right)$ as the pair $\left(\Delta^{n}, \partial \Delta^{n}\right)$.
Claim. The identity $i_{n}: \Delta^{n} \longrightarrow \Delta^{n}$ (viewed as a singular n-simplex) is a cycle generating $H_{n}\left(\Delta^{n}, \partial \Delta^{n}\right)$.
Proof. in is clearly a cycle as we are considering $H_{n}\left(\Delta^{n}, \partial \Delta^{n}\right)$. Our assertion holds trivially for $n=0$.
Assume the result holds for $n-1$. For the inductive step, let $\wedge c \Delta^{n}$ be the union of all but one of
the $(n-1)$-dimensional faces of Δ^{n}. Note that:
(i) Δ^{n} deformation retracts onto $\Lambda \Rightarrow\left(\Delta^{n}, \Lambda\right) \simeq(\Lambda, \Lambda)$.
(ii) The inclusion $\Delta^{n-1} c \partial \Delta^{n}$ as the face not contained in Λ induces homeomorphisms

$$
\Delta^{n-1} / \partial \Delta^{n-1} \approx \partial \Delta^{n} / n
$$

Now consider the following isomorphisms:
$\cong_{1 \text { : Follows from the LES of }}$ the triple $\left(\Delta^{n}, \partial \Delta^{n}, \Lambda\right)$ an (i) above, as $H_{i}\left(\Delta^{n}, \Lambda\right)=0$, for all i.
$\simeq 2$ Follows from the preceding proposition and (ii).
By our induction hypothesis $H_{n-1}\left(\Delta^{n-1}, \partial \Delta^{n-1}\right)=\langle i n-1\rangle$. The assertion now follows from the fact that $\bar{\partial}\left(i_{n}\right)= \pm i_{n-1}$.
Regarding $S^{n}=\Delta_{1}^{n} \cup \Delta_{2}^{n}$ and apply. ing a similar reasoning $H_{n}\left(s^{n}\right)=\left\langle\Delta_{1}^{n}-\Delta_{2}^{n}\right\rangle$ Corollary. If a cw-complex x is a union of subcomplexes A and B, then the inclusion $(B, A \cap B) \hookrightarrow(x, A)$ induces isomorphisms $H_{n}(B, A \cap B) \rightarrow H_{n}(x, A)$, for all n.
Proof. It follows directly from

The Proposition and the fact that $B / A \cap B \approx X / A$.
Corollary. For a wedge sum $V_{\alpha \in J} X_{\alpha}=\bigcup_{\alpha \in J} X_{\alpha} /\left\{x_{\alpha}: \alpha \in J\right\}$ with each pair $\left(X_{\alpha}, x_{\alpha}\right)$ forming a good pair, the inclusions $i_{\alpha}: X_{\alpha} \longleftrightarrow \bigcup_{\alpha \in J} X_{\alpha}$ induce an isomorphism

$$
\underset{\alpha \in J}{\text { norphism } \left._{(i)}^{(L)}\right)_{*}}: \oplus_{\alpha \in J}^{\oplus} \tilde{H}_{n}\left(x_{\alpha}\right) \rightarrow \tilde{H}_{n}\left(\alpha_{\alpha \in J} x_{\alpha}\right)
$$

Proof. Follows immeadietly by considering the pair $\left.\left(\frac{1}{2 \alpha J} x_{\alpha}, \sum x_{2}: \alpha \alpha \overrightarrow{5}\right\}\right)$ in the Proposition and the fact that $\tilde{H}_{n}\left(x_{\alpha}\right) \cong H_{n}\left(x_{\alpha}, x_{\alpha}\right)$.

Theorem (Grower. 1910). If nonempty open set $U \subset \mathbb{R}^{m}$ and $\cup \subset \mathbb{R}^{n}$ are homeomorphic, then $m=n$.
Proof. For $x \in U$, we have:

$$
\begin{aligned}
& H_{k}(U, U-\{x\}) \cong H_{k}\left(\mathbb{R}^{m}, \mathbb{R}^{m}-\{x\}\right) \\
& \text { (by excision) } \\
& \cong \widetilde{H}_{k-1}\left(R^{m}-\{x \xi)\right. \\
& \text { (LES of pair } \\
& \left(\mathbb{R}^{m}, \mathbb{R}^{m}-\{x \xi)\right. \\
& \cong \widetilde{H}_{K-1}\left(S^{m-1}\right) \\
& \left(\mathbb{R}^{m}-\{x\} \simeq S^{m-1}\right) \\
& \cong \begin{cases}\mathbb{Z}, & \text { if } k=m \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Now, suppose that $f: U \rightarrow V$ is a homeomorphism. Then of inducer an isomorphism

$$
H_{k}(U, u-\{x\}) \xrightarrow{f_{*}} H_{k}(V, V-\{h(x)\})
$$ for all k. Hence, it follows that $m=n$.

Remark. Given a map $f:(x, A) \rightarrow(y, B)$ there exists a commutative diagram:

$$
\begin{aligned}
& \cdots \rightarrow H_{n}(A) \xrightarrow{i_{*}} H_{n}(x) \xrightarrow{j_{*}} H_{n}(x, A) \xrightarrow{\partial} H_{n-1}(A) \rightarrow \cdots \\
& \downarrow f_{*} \downarrow f_{*} \\
& \downarrow f_{*} \\
& \|_{n}^{f_{*}}(B) \xrightarrow{i_{*}} H_{n}(x) \xrightarrow{i_{*}} H_{n}(x, B) \xrightarrow[\rightarrow]{\partial} H_{n-1}(B) \rightarrow \cdots
\end{aligned}
$$

This property is called naturality. and it follows from the commutativity of the following diagram:

$$
\begin{aligned}
& 0 \rightarrow C_{n}(A) \xrightarrow{i} C_{n}(x) \xrightarrow{j} C_{n}(x, A) \rightarrow 0 \\
& \downarrow \rightarrow f_{\#} \downarrow(B) \xrightarrow{i} C_{n}(y) \xrightarrow{j} C_{n}(y, B) \rightarrow 0
\end{aligned}
$$

(Which is obvious) and fact that $f \# \partial=\partial f \#$.
In a similar manner, there also exists a commutative diagram:

$$
\begin{aligned}
& \cdots \rightarrow \widetilde{H}_{n}(A) \xrightarrow{i i_{*}} \widetilde{H}_{n}(x) \xrightarrow{q_{*}} \widetilde{H}_{n}(x / A) \xrightarrow{\partial} \widetilde{H}_{n-}(A) \rightarrow \cdots \\
& \downarrow f_{*} f_{*} \\
& \cdots \rightarrow \widetilde{H}_{n}(B) \xrightarrow{i+f_{n}}(x) \xrightarrow{q_{*}} \widetilde{H}_{n}(x / B) \xrightarrow{\partial} \widetilde{H}_{n}(B) \rightarrow \cdots
\end{aligned}
$$

Equivalence of simplicial and singular homology
Let x be a Δ-complex and A a subcomplex. Then $H_{n}^{\Delta}(x, A)$ is defined by considering the relative Chain group $\Delta_{n}(x, A)=\Delta_{n}(x) / \Delta_{n}(A)$ There is a canonical homomorphism $H_{n}^{\Delta}(x, A) \rightarrow H_{n}(x, A)$ induced by natural chain $\operatorname{map} \operatorname{Ban}_{n}(x, A) \rightarrow C_{n}(x, A)$ sending each n-simplex $\Delta^{n} \alpha$ Characteristic map $\sigma_{\alpha}: \Delta_{\alpha}^{n} \longrightarrow x$ defined by the composition:

$$
\Delta_{\alpha}^{n} \rightarrow x^{n-1} 山_{\alpha} \Delta_{\alpha}^{n} \rightarrow x^{n} c x
$$

(σ_{α} is in essence the composition of the attachin map with the quotient map)

Theorem. Ret (x, A) be a Δ-complex pair. Then the homomomorphism $H_{n}^{\Delta}(x, A) \longrightarrow H_{n}(x, A)$ is an isomorphism for each n.
Proof. We first consider the case x is finite-dimensional and $A=\varnothing$. We have the following commutative diagram:

$$
\begin{aligned}
& \text { have the following commuter } \\
& H_{n+1}^{\Delta}\left(x^{k}, x^{k-1}\right) \rightarrow H_{n}^{\Delta}\left(x^{k-1}\right) \rightarrow H_{n}^{\Delta}\left(x^{k}\right) \rightarrow H_{n}^{\Delta}\left(x^{k}, x^{k-1}\right) \rightarrow H_{n-1}^{\Delta}\left(x^{k-1}\right) \\
& \downarrow \alpha \\
& \downarrow \beta \\
& \downarrow \gamma
\end{aligned}
$$

$$
\begin{gathered}
H_{n+1}\left(x^{\prime}, x\right. \\
\downarrow \alpha \\
H_{n+1}\left(x^{k}, x^{k-1}\right) \rightarrow H_{n}\left(x^{k-1}\right) \rightarrow H_{n}\left(x^{k}\right) \rightarrow H_{n}\left(x^{k}, x^{k-1}\right) \rightarrow H_{n-1}\left(x^{k-1}\right)
\end{gathered}
$$

Now, we make the following observations:
(a) $\quad \Delta_{n}\left(x^{k}, x^{k-1}\right)=\left\{\begin{array}{l}0, \text { if } n \neq k \\ \langle\{k \text {-simplices }\}, \text { if } n=k\end{array}\right.$

Thus, $H_{n}^{\Delta}\left(x^{k}, x^{k-1}\right)$ has the same description.
(b) The characteristic map $\sigma_{k}^{\alpha}: \Delta_{\alpha}^{k} \rightarrow X$ induce:

$$
\Phi: \bigcup_{\alpha}\left(\Delta_{\alpha}^{k}, \gamma \Delta_{\alpha}^{k}\right) \rightarrow\left(x^{K}, x^{k-1}\right)
$$

The Φ induces a homeomorphism of quotient spaces:

$$
\begin{aligned}
& L_{\alpha} \Delta_{\alpha}^{k} / \Delta_{\alpha} \partial \Delta_{\alpha}^{k} \approx x^{k} / x^{k-1},
\end{aligned}
$$

and hence an isomorphism of homology groups. Consequently, from the fact that $H_{k}\left(\Delta^{k}, \gamma \Delta^{k}\right)=\left\langle^{i} \Delta^{k}\right\rangle$, we have:

$$
\begin{aligned}
& \text { have: } \\
& H_{n}\left(x^{k}, x^{k-1}\right)=\left\{\begin{array}{l}
0, \text { if } n \neq k \\
\left.\begin{array}{l}
\text { Relative cycles } \\
\text { given by chadar } \\
\text { map } \sigma_{\alpha}
\end{array}\right\rangle, \text { if } \\
n=k
\end{array}\right.
\end{aligned}
$$

From (a) and (b), we have α and δ are isomorphisms. Moreover, by induction β and E are also isomorphism.
Finally, we appeal to the following basic algebraic lemma:

The Five-hemma. In a commutative diagram of abelian groups

$$
\begin{aligned}
& A \xrightarrow{i} B \xrightarrow{j} C \xrightarrow{k} D \xrightarrow{l} E
\end{aligned}
$$

$$
\begin{aligned}
& A^{\prime} \xrightarrow{i} B^{\prime} \xrightarrow{\prime} C^{\prime} \xrightarrow{K^{\prime}} D^{\prime} \xrightarrow{l^{\prime}} E^{\prime}
\end{aligned}
$$

if the tow rows are exact and α, β, δ, and ε are isomorphisms. then γ is an isomorphism.
Thus, from the five.lemma, it follows that γ is an isomorphism.
For the infinite dimensional case, we first make the following claim.
Claim. A compact set in X can meet only finitely many open simplices of X.

Proof(ofclaim). Suppose we assume that a compact set C intersected infinitely many open simplices $\Delta_{i}^{k_{i}}$ It would then contain an infinite sequence $\left\{x_{i}\right\}$ each lying in a different open simplex.
Then consider the sets $U_{i}=x-\underset{j \neq i}{\bigcup_{j}\left\{x_{i}\right\}}$ Note that each $\left(\sigma_{i}^{k_{i}}\right)^{-1}\left(U_{i}\right)$ is open.
Thus $\left\{U_{i}\right\}$ forms an open cover for C with no finite subcover We use this claim to show that $H_{n} \Delta(x) \longrightarrow H_{n}(x)$ is an isomorphism. We only show the argument for
surjeclivity us the injectivity follows along similar lines.
Consider a class $[z] \in H_{n}(x)$ represented by a singular n-cycle z. As z is a linear combination of finitely many singular simplies each with compact image. Thus z meets only finitely many open simplices in X and hence $z \in X^{k}$ for some k. Now the surjectivity of the map follows from the fact that $H_{n}^{\Delta}\left(x^{k}\right) \rightarrow H_{n}\left(x^{k}\right)$ is an isomorphism.

For the case when $A \neq \varnothing$, we consider the following commutative diagram:

$$
\begin{align*}
& H_{n}^{A}(A) \rightarrow H_{n}^{\Delta}(x) \rightarrow H_{n}^{A}(x, A) \rightarrow H_{n-1}^{\Delta}(A) \rightarrow H_{n-1}^{\Delta}(x) \tag{x}\\
& \begin{array}{c}
\downarrow \alpha^{\prime} \\
H_{n}(A) \rightarrow H_{n}(x) \rightarrow \beta_{n}(x, A) \rightarrow H_{n-1}^{\prime}(A) \rightarrow H_{n-1}(x)
\end{array}
\end{align*}
$$

Now $\alpha^{\prime}, \beta^{\prime}, \varepsilon^{\prime}$, and ϵ^{\prime} are isomorphisms from the case $A=\varnothing$. Therefore, γ^{\prime} is an isomorphism from the five -lemma
Defn. The number of \mathbb{Z} summands in $H_{n}(x)$ is called the $n^{\text {th }}$ Betti number and the orders of its finite cyclic summand are called torsion coefficients.

Applications of homology
Defn. For a map $f: s^{n} \longrightarrow s^{n}$, the induced homomorphism $f_{*}: \tilde{H}_{n}\left(S^{n}\right) \rightarrow \widetilde{H}_{n}\left(S^{n}\right)$ is an isomorp him $\mathbb{Z} \rightarrow \mathbb{Z}$. Hence, $\exists d \in \mathbb{Z}$ -Such that $f_{*}(a)=d \alpha$, for each $\alpha \in \tilde{H}_{n}\left(s^{n}\right)$. This integer d is called degree of f, de noted by $\operatorname{deg}(f)$.
Proposition (Properties of deg)
(a) $\operatorname{deg}(d d)=1$
(b) If f is surjective, then $\operatorname{deg}(f)=0$.
(c) If $f \simeq g$, then $\operatorname{deg}(t)=\operatorname{deg}(g)$.
(d) $\operatorname{deg}(f \circ g)=\operatorname{deg}(f) \operatorname{deg}(g)$
(e) If f is a reflection of $s n$ fixing the points in a subsphere S^{n-1}, then $\operatorname{deg}(f)=-1$.
(f) The antipodal map $a: s^{n} \rightarrow s^{n}$ has degree $(-1)^{n+1}$.
(g) If $f: S^{n} \rightarrow S^{n}$ has no fixed points, then $\operatorname{deg}(f)=(-1)^{n+1}$.

Proof
(a) Th is is because ($i d s^{n}$)*

$$
=i d \tilde{H}_{n}\left(\delta^{n}\right)
$$

(b) Suppose that $\exists x_{0} \in S^{n} \backslash f\left(S^{n}\right)$. the f is the composition:

$$
S^{n} \xrightarrow{f} S^{n}-\left\{x_{0}\right\} \xrightarrow{i} S^{n}
$$

The assertion now follows
from the fact that $H_{n}\left(S^{n}-\{0\}\right)=0$
(c) We know that if $f \simeq g$, then $f_{*}=g_{*}$. Therefore, $\operatorname{deg}(f)=\operatorname{deg}(g)$.
(Note that the converse of this statement is due to Hopf. 1925).
(d) This follows from the fact that $(f \circ g)_{*}=f_{*} \circ g_{*}$.
(e) We have seen that δ has a Δ-complex structure with $2 n$-simplices $\Delta_{1}^{n}, \Delta_{2}^{n}$ attached along $\partial \Delta^{n} i$, and that

$$
H_{n}\left(s^{n}\right)=\left\langle\Delta_{1}^{n}-\Delta_{2}^{n}\right\rangle
$$

A reflection such as f would swap Δ_{1}^{n} with Δ_{2}^{n}, and so we have that $\Delta_{1}^{n}-\Delta_{2}^{n} \xrightarrow{f_{*}} \Delta_{2}^{n}-\Delta_{1}^{n}$.

Thus, $\operatorname{deg}(f)=-1$.
(f) This is a direct consequence of the fact that a is a composition of $(n+1)$ reflections.
(g) If $f: s^{n} \longrightarrow S^{n}$ has no fixed point, then the map

$$
H: S^{n} \times I \rightarrow S^{n}:(x, t) \stackrel{H}{\|} \frac{(1-t) f(x)-t x}{(1-t) f(x)-t x \|}
$$

defines a homotopy from f to a. Thus, $\operatorname{deg}(f)=(-1)^{n+1}$.

Theorem S^{n} has continuous nonvanishing tangent vector field iffy n is odd.
Proof. Let $v: S^{n} \longrightarrow \mathbb{R}^{n}$ be a nonvanishing tangent vector field. Since $v(x) \neq 0(\forall x)$ we may normalize v by replacing v by $\frac{V}{\|v\|}$. Then, the map $F: S^{n} \times[0, \pi] \rightarrow S^{n}$ defined by $F(x, t)=(\operatorname{Cos} t) v(x)+(\sin t) v(x)$ is a homotopy from id s^{n} to
a. Hence, we have that $(-1)^{n+1}$ $=1$, or n is odd.

Conversely, if n is odd, then $v\left(x_{1}, \ldots, x_{2 k-1}, x_{2 k}\right)=\left(-x_{2}, x_{1}, \ldots-x_{2 k}, x_{2 k-1}\right)$ is a non-vanishing tangent vector field on $S^{n}\left(\because\left\|_{V(x)}\right\|=1\right.$ and $\langle x, v(x)\rangle=0)$.

Proposition. \mathbb{Z}_{2} is the only nontrivial group that can act freely on s^{n} if n is even.
Proof. An action of a group G on a space is defined to be a homomorphism $G \rightarrow$ Homed (x) Such an action is said to be free if $\varphi(\mathrm{g})$ has no fixed points
for each $g \in G$.
Now the map deg: Homed $(x) \rightarrow\{ \pm T\}$ induces a map $d: G \longrightarrow\{ \pm 1\}$. where $d=$ degol. Clearly, d is a homomorphism $\operatorname{ker}(\varphi)=\{1\}$, if n is even. Thus, $G \subset \mathbb{Z} 2$

Remark. Ret $f: s^{n} \longrightarrow s^{n}$ have the property that for some point $y \in S^{n}$, $f^{-1}(y)=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$. Let $U_{i} \ni x_{i}$ Be a nbhd such that $f\left(U_{i}\right) \subset V$, where V is a nhl of y.

Then we have the following commutative diagram.

$$
\begin{aligned}
& H_{n}\left(S^{n}, \delta^{n}-x_{i}\right) H_{n}\left(U_{i}, U_{i}-\left\{x_{i}\right\}\right) \xrightarrow{\sim_{1}} H_{n}(v, v-y) \\
& \nu \cong \\
& H_{n}\left(s^{n}, \delta^{n}-x_{i}\right) \stackrel{p_{i}}{\longleftrightarrow} H_{n}\left(s^{n}, s^{n}-f^{n-1}(y)\right) \xrightarrow{f_{*}} H_{n}\left(s^{n}, s^{n}-y\right) \\
& \stackrel{\cong_{3}}{\cong} H_{n}\left(s^{n}\right)^{j} \xrightarrow{f_{*}} H_{n}\left(s^{n}\right)
\end{aligned}
$$

Here $k i, p_{i}$ are induced by inclusions. $\cong 1$ and $\cong 2$ follow from Excision. while \cong_{3} and \cong_{4} follow from the exact sequence of pairs.
Thus, the f_{*} (on top) becomes an isomorphism since

$$
\begin{array}{r}
H_{n}\left(U_{i}, U_{i}-x_{i}\right) \cong H_{n}(v, V-y) \cong H_{n}\left(S^{n}\right) \\
\cong \mathbb{Z}
\end{array}
$$

In particular, $f *$ is multiplication by an integer called the local degree of f at $x i$. (denoted by $\left.\operatorname{deg}\left(f \mid x_{i}\right)\right)$.

Proposition $\operatorname{deg}(f)=\sum_{i} \operatorname{deg}\left(\left.f\right|_{x_{i}}\right)$.
Proof By Excision, it follows that $H_{n}\left(s^{n}, s^{n}-f^{-1}(y)\right) \cong \bigoplus_{i=1}^{m} H_{n}\left(v_{i}, v_{i}-x_{i}\right)$ $\cong \bigoplus_{i=1}^{m} \mathbb{Z}$
Moreover, $k_{i}(l)=e_{i}$. (inclusion on the i th summand), and since the upper triangle commutes, we have $p_{i}\left(e_{j}\right)=1, \forall_{j}^{j}$. (i.e. p^{i} is the projection onto the ith summand)
By the commutativity of the lower triangle, we have $\left(p_{i} \circ j\right)(1)=1$, and so it follows that:

$$
\begin{aligned}
& \text { and so it } \\
& j(1)=(1, \ldots, 1)=\sum_{i} k_{i}(1)
\end{aligned}
$$

Now the commutativity of upper square implies that $f_{*}\left(k_{i}(1)\right)$

$$
\begin{aligned}
=\operatorname{deg} f \mid x_{i} \Rightarrow f_{*}(j(1)) & =f_{*}\left(\sum_{i} k_{i}(1)\right) \\
& =\sum_{i} \operatorname{deg}\left(f \mid x_{i}\right)
\end{aligned}
$$

Finally, the commutativity of the lower square implies that

$$
\operatorname{deg}(f)=\sum_{i} \operatorname{deg}\left(\left.f\right|_{x_{i}}\right)
$$

Examples
(a) Consider the maps $S^{n} \xrightarrow{V} V_{k} S^{n} P \longrightarrow S^{n}$, where of collapses the complement of k disjoint balls B_{i} in s^{n} to a point and p identify
each of the resultant sphere Summands to a single sphere. Let $f=$ poo; then for almost all $y \in s^{n}$, we have $f^{-1}\left(y_{i}\right)=\left\{x_{1}, \cdot x_{k}\right\}$ where $x_{i} \in B_{i}$.
Since f is a local homeumorphism at each x_{i}, we have $\left.\operatorname{deg}(f) x_{i}\right)= \pm 1$.
By precomposing P with reflection of the summand of $V_{k}\left(S^{n}\right)$, we can produce maps $S^{n} \rightarrow S^{n}$ of degree $\pm k$.
Example Consider the map $f: S^{\prime} \longrightarrow S^{\prime}: z \longrightarrow z^{k}$. When
$k>0, f$ is a covering map and so we have $f^{-1}(y)=\left\{x_{1}, \cdots x_{k}\right\}$ with f being a local home around each x_{i}.

A rotation has degree +1 as it is homotopic to ids. Since around each point x_{i}, f can be homotoped to he restriction of a rotation, we have $\operatorname{deg}(f)=\sum_{i=1}^{k} \operatorname{deg}\left(\left.f\right|_{x_{i}}\right)=k$.

Defn. The suspension $S x$ of a space X is defined by

$$
S X=X \times[0,1] /(X \times 20 \xi) \cup(X \times\{1\})
$$

Thus, a map $f: x \rightarrow y$ suspends to a map SF:SX \rightarrow SH.
Proposition. For a map $f: s^{n} \rightarrow s^{n}$

$$
\operatorname{deg}(f)=\operatorname{deg}(S f)
$$

Proof. First, we note $S S^{n} \approx S^{n+1}$.

Moreover, $C S^{n}=S^{n} \times I / S \times\{1\}\left(\approx D^{n+1}\right)$, (the cone of S^{n}) has base $S^{n} \times\{0\}$, -80 $\mathrm{CS}^{n} / S^{n} \approx S^{n+1}\left(=S S^{n}\right)$
Thus, the map f induces a $C f:\left(C S^{n}, S^{n}\right) \longrightarrow\left(C S^{n}, S^{n}\right)$ with quotient $S f: S^{n+1}\left(=C s^{n} / s^{n}\right) \rightarrow S^{n+1}\left(=C S^{n} / s^{n}\right)$
Thus, by naturality of the boundary maps in the LES of the pair $\left(c s^{n}, s^{n}\right)$, we have the commutative diagram:

$$
\begin{aligned}
& \widetilde{H}_{n+1}\left(S^{n+1}\right) \xrightarrow{\bar{\partial}} \widetilde{H}_{n}\left(S^{n}\right) \\
& \sim{ }^{\downarrow} f_{*}, \bar{\downarrow} f_{*} \\
& \widetilde{H}_{n+1}\left(\delta^{n+1}\right) \xrightarrow{\bar{\partial}} \widetilde{H}_{n}\left(s^{n}\right)
\end{aligned}
$$

Hence, $\operatorname{deg}(f)=\operatorname{deg}(S f)$
Cellular Homology
If X is $e w$-complex, then:
(a) $H_{k}\left(x^{n}, x^{n-1}\right)=\left\{\begin{array}{l}0, \text { if } k \neq n \\ <\{n-c e l l s\}, \text { if } k=n\end{array}\right.$
(b) $H_{k}\left(x^{n}\right)=0$, for $k>n$. In particular, if x is finite-dimensional, then $H_{k}(x)=0$, for $k>\operatorname{dim}(x)$.
(c) The inclusion $i: x^{n} \longrightarrow x$ induces an isomorphism $i_{*}: H_{k}\left(x^{n}\right) \longrightarrow H_{k}(x)$, for $k<n$.

Proof (a) Since $\left(x^{n}, x_{|\{n-c e l i l s\}|}^{n-1}\right.$ is a good pair and $\left(x^{n} / x^{n-1}\right) \approx \bigvee_{i=1} S^{n}$, we have:

$$
\begin{aligned}
& H_{k}\left(x^{n}, x^{n-1}\right) \cong H_{k}\left(V_{i=1}^{(2 n-c e l l s\}} S^{n}\right) \\
& \text { |\{n-cells\}| } \\
& \cong\left\{\begin{array}{l}
\oplus_{i=1}^{(k n-c e l s s)}, \text { if } k=n \\
0, \text { if } k \neq n
\end{array}\right.
\end{aligned}
$$

(b) From the LES of the pair $\left(x^{n}, x^{n-1}\right)$, we have:

$$
\begin{aligned}
\rightarrow H_{k+1}\left(x^{n}, x^{n-1}\right) \rightarrow & H_{k}\left(x^{n-1}\right) \rightarrow H_{k}\left(x^{n}\right) \\
& \rightarrow H_{k}\left(x^{n}, x^{n-1}\right) \rightarrow \cdots
\end{aligned}
$$

Here, $H_{k}\left(x^{n}, x^{n-1}\right)=0$, for $k \neq n, n-1$. So, $H_{k}\left(x^{n-1}\right) \cong H_{k}\left(x^{n}\right)$, for $k \neq n, n-1$.

Thus, for $k>n$, we have $H_{k}\left(x^{n}\right) \cong H_{K}\left(x^{0}\right)=0$, as required.
(c) If $k<n$, then $H_{k}\left(x^{n}\right) \cong H_{k}\left(x^{n+m}\right)$, for all $m \geqslant 0$, proving (c) if X is finite-dimensional.
The proof for the infinitedimensional case is left as an exercise

For a cw-complex, by Lemma above, we hare the following diagram:

$$
\begin{aligned}
& \partial_{\partial_{n+1} \overbrace{}^{0} H_{n}\left(x^{n}\right) j_{n}\left(x^{n-1}\right) \cong H_{n}(x) .} \\
& \cdots \rightarrow H_{n+1}\left(x^{n+1}, x^{n}\right) \xrightarrow{d_{n+1}} H_{n}\left(x^{n}, x^{n-1}\right) \xrightarrow{d n} H_{n-1}\left(x^{n-1}, x^{n-2}\right) \cdots \\
& 7_{j n-1} \\
& \partial_{n} y_{H_{n-1}}\left(x^{n-1}\right) \\
& 0^{\pi}
\end{aligned}
$$

Here, $d_{n+1}=j_{n 0 \partial n+1}$ and $d_{0}=j_{n-10}^{0} \partial n$, and so $d_{n} \cdot d_{n+1}=j_{n-1} 0\left(\partial n 0 j_{n}\right)_{0} \partial n+1$

$$
=0
$$

Thus, the horizontal row forms a chain complex, called the
cellular chain complex.
The homology groups of this chain complex are called the cellular homology groups $H_{n}^{c w}(x)$.
Theorem. $H_{n}^{c w}(x) \cong H_{n}(x)$.
Proof From the diagram above, it follows that:

$$
H_{n}(x) \cong H_{n}\left(x^{n}\right) / \operatorname{Im}\left(x_{n+1}\right)
$$

Since j_{n} is infective, we have:
(a) $\operatorname{Im}(j n)=\operatorname{ker}(\partial n)$.
(b) $\operatorname{Im}\left(\partial_{n+1}\right) \cong \operatorname{Im}\left(j_{n} \circ \partial_{n+1}\right)$ $=\operatorname{Im}\left(d_{n+1}\right)$

Since j_{n-1} is infective, we have
(c) $\operatorname{Ker}(\partial n)=\operatorname{ker}(d n)$. Thus from $(a)-(c)$, it follows that j_{n} induces $j_{n}: H_{n}\left(x^{n}\right) / \operatorname{Im}\left(\partial_{n+1}\right)$

$$
\rightarrow \operatorname{Ker}(d n) / \operatorname{Im}(d n+1)=H_{n}^{C w}(x)
$$

Corollary.
(a) If x is a $C W$-complex with $k n$-cells, then $H_{n}(x)$ is generated by at most k elements. In particular, if x no k-cells, then $H_{n}^{C w}(x)=0$
(b) If x is a cw-complex with no two of its cells in
adjacent dimensions, then $H_{n}(x)=\{\{n$-cells in $x\}\rangle$.
Example:

$$
\frac{\text { Example }}{\mathbb{C} P^{n}}=\mathbb{C}^{n+1}-\{0\} / x \sim \lambda v \text {, for }
$$

$\lambda \neq 0$. Equivalently,

$$
\begin{aligned}
& \lambda \neq 0 \text {. } \\
& \mathbb{C P}^{n}=S^{2 n+1}\left(c \mathbb{C}^{n+1}\right) / v \sim \lambda v, \text { for } \\
& |\lambda|=1 \text {. } \\
& \text { Claim. } \mathbb{C P}^{n}=D^{2 n} / v \sim \lambda v \text {, for } v \in \partial D^{2 n}
\end{aligned}
$$

Proof. The vectors in $S^{2 n+1} \subset \mathbb{C}^{n+1}$ with last coordinate real and nonnegative are precisely vectors of the form $\left(w, \sqrt{1-\|w\|^{2}}\right) \in \mathbb{C}^{n} \times \mathbb{C}$ with $\|w\| \leq 1$. These vectors form
the graph of the function $w \stackrel{f}{\longrightarrow} \sqrt{1-\|w\|^{2}}$. Note that $\operatorname{Im}(f)$ is a disk $D_{+}^{2 n}$ bounded by the sphere $S^{2 n-1} \subset S^{2 n+1}$, where $S^{2 n-1}=\left\{(w, 0) \in \mathbb{C}^{n} \times \mathbb{C} \mid\|w\|=1\right\}$. Since each vectors in $S^{2 n+1}$ is equivalent under the identification $v \sim \lambda v$ to a unique $D_{+}^{2 n}$ (if the last coordinate is zero), we have $v \sim \lambda v$, for $v \in S^{2 n-1}$.
From this description, we see that $\mathbb{C} \mathbb{P}^{n}=\mathbb{C} \mathbb{P}^{n-1} U e^{2 n}$, where $e^{2 n}$ is attached by the quotient
$\operatorname{map} S^{2 n-1} \longrightarrow \mathbb{C} \mathbb{P}^{n-1}$.
Thus, by induction, we have $\left(C^{p n}=e^{0} v e^{2} v \cdots v e^{2 n}\right.$.
Therefore,

Proposition (cellular boundary formula).

$$
\begin{aligned}
& \text { formula) } \\
& d_{n}\left(e_{\alpha}^{n}\right)=\sum_{\beta} d \alpha \beta e_{\beta}^{n-1} \text {, where } \\
& d_{\alpha \beta}=\operatorname{deg}\left(S_{\alpha}^{n-1} \rightarrow x^{n-1} \rightarrow S_{\beta}^{n-1}\right)
\end{aligned}
$$

that is the composition of the attaching map of e_{α}^{n} with the quotient map collapsing $x^{n-1}-e_{\beta}^{n-1}$ to a point.

Examples (a)Mg h as one o-cell, $2 g 1$-cells $a_{1}, b_{1}, \ldots a g, b g$ attached along $\left[a_{1}, b_{1}\right] \ldots\left[a_{g}, b_{g}\right]$. The associated cellular chain complex is:

$$
0 \rightarrow \mathbb{\mathbb { }} \xrightarrow{d_{2}} \mathbb{Z}^{2 g} \xrightarrow{d_{1}} \mathbb{\mathbb { }} \xrightarrow{ } 0
$$

As there is only one 0 -cell, $d_{1}=0$. $d_{2}\left(e_{1}^{2}\right)=\sum_{i=1}^{2 g} d_{1 i} e_{i}^{n-1}$, where the one skeleton comprises the edges $\left\{e_{1}^{1}, e_{2}^{1}, \ldots, e_{2 g}^{l}\right\}$.

Thus, $d_{2}\left(e_{1}^{2}\right)=\sum_{i=1}^{2 g} e_{i}^{1}-\sum_{i=1}^{2 g} e_{i}^{1}=0$

$$
\Rightarrow H_{n}(M g)= \begin{cases}\mathbb{Z}^{2 g}, & \text { if } n=1 \\ \mathbb{Z}^{,}, & \text {if } n=0,2 \\ 0, & \text { otherwise. }\end{cases}
$$

(b) Non orientable surface $N g$ of genus g.

collapse

$$
0 \rightarrow \mathbb{Z} \xrightarrow{d_{2}} \mathbb{Z}^{g} \xrightarrow{d_{1}} \mathbb{Z} \longrightarrow 0
$$

As in the case of $M g, d_{1}=0$.
Moreover, $d_{2}\left(e_{1}^{2}\right)=2 \sum_{i=1}^{g} e_{i}^{1}$

$$
\begin{aligned}
& i=1 \\
= & 2\left(e_{1}^{1}+\cdots+e^{\prime} g\right),
\end{aligned}
$$

i.e. $\quad d_{2}(1)=(2, \ldots 2)$

$$
\begin{aligned}
H_{1}(N g)= & \frac{\operatorname{Ker}\left(d_{1}\right)}{\operatorname{Im}\left(d_{2}\right)} \stackrel{\mathbb{Z}}{=} \frac{\mathbb{Z}}{\langle(2, \cdots, 2)\rangle} \\
& \cong \frac{\left\langle e_{1}, e_{2}, \ldots, e_{g-1}, e_{1}+\cdots+e_{g}\right\rangle}{\left\langle 2\left(e_{1}+\cdots+e_{g}\right)\right\rangle} \\
& \cong \mathbb{Z}^{g-1} \oplus \mathbb{Z}_{2} \\
H_{n}(N g) & =\left\{\begin{array}{l}
\mathbb{Z}, n=0,2 \\
\mathbb{Z}^{2 g-1} \oplus \mathbb{Z}_{2}, n=1 \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

(C) $\mathbb{R} P^{n}$ has a $C W$-structure with one cell e^{k} in each dimens' n $k \leqslant n$ and e^{k} attached via 2 -sheeted $\varphi: s^{k-1} \rightarrow \mathbb{R}^{k-1}$.

$$
\begin{aligned}
& 0 \xrightarrow{d_{n}} \mathbb{Z} \xrightarrow{d_{n-1}} \mathbb{Z} \rightarrow \cdots \rightarrow \mathbb{Z} \xrightarrow{d_{1}} \underset{S_{1}^{k-1}}{d_{0}} 0 \\
& d_{k}=\operatorname{deg}\left(s^{k-1 \varphi} \mathbb{R} P^{k-1} \stackrel{R}{ } \mathbb{R} P^{k-1} / \mathbb{R} P^{k-2}\right)
\end{aligned}
$$

Note that $S^{K-1} \backslash S^{K-2}=D_{2}^{1} \backsim D_{2}^{2}$ and $(\operatorname{q\circ \varphi }) \mid D_{2}^{i}=h i$ is a home Such that $h_{2}=h_{10} a$

Thus, we have $\operatorname{deg}(q \circ \varphi)$

$$
\begin{aligned}
& =\operatorname{deg}(i d)+\operatorname{deg}(a) \\
& =1+(-1)^{k}
\end{aligned}
$$

$S_{0,} d k= \begin{cases}0, & \text { if } k \text { is odd } \\ 2, & \text { if } k \text { is even }\end{cases}$

$$
H_{k}\left(\mathbb{R} P^{n}\right)=\left\{\begin{array}{l}
\mathbb{Z}, \text { if } k=0 \text { e } \\
k=n \text { odd } \\
\mathbb{Z}_{2}, \text { if } k \text { odd } \\
0<k<n
\end{array}, \begin{array}{l}
0, \text { otherwise } .
\end{array}\right.
$$

Euler Characteristic
For a finite $C W$-complex X, the Euler characteristic $X(x)$ is defined to be $\sum_{n}(-1)^{n} \mathrm{C} n$, where C_{n} is the number of n-cells of X.
Theorem $X(x)=\sum_{n}(-1)^{n}$ rank $H_{n}(x)$
Proof. Here rank is the number of free generators of $H_{n}(x)$.

For a short exact sequence of finitely generated abelian groups $\quad 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$. we have $\operatorname{rank}(B)=\operatorname{rank}(A) \oplus$ rank (c).

Now, we consider the chain complex:

$$
\xrightarrow{\text { complex: }} C_{n+1} \xrightarrow{n+1} C_{n} \xrightarrow{d_{n}} C_{n-1} \rightarrow \cdots \rightarrow C_{1}^{d_{1} \rightarrow C_{0} \rightarrow{ }^{d o} \text {, }}
$$

where $C_{n}=H_{n}\left(x^{n}, x^{n-1}\right)$.
This leads to two SESS:
(a) $0 \rightarrow \operatorname{Ker}\left(d_{n}\right) \rightarrow \mathrm{C}(x) \xrightarrow{d n} \operatorname{Im}\left(d_{n}\right) \rightarrow 0$
(b) $0 \rightarrow \operatorname{Im}(d n+1) \rightarrow \operatorname{Ker}(d n) \rightarrow \operatorname{Hn}_{n}(x)$

From (a) and (b), we have:

$$
\begin{aligned}
\text { (i) } \operatorname{Rank}(\operatorname{Cn}(x))= & \operatorname{Rank}\left(\operatorname{Im}\left(d_{n}\right)\right) \\
& +\operatorname{Rank}\left(\operatorname{Ker}\left(d_{n}\right)\right) \\
\text { (ii) } \operatorname{Rank}\left(\operatorname{Ker}\left(d_{n}\right)\right)= & \operatorname{Rank}(\operatorname{Im}(\operatorname{dn}+1)) \\
& +\operatorname{Rank}\left(\operatorname{Hn}_{n}(x)\right)
\end{aligned}
$$

Sub (ii) in (i), multiplying by $(-1)^{n}$ and summing over n, we get:

$$
\begin{aligned}
& \begin{array}{l}
\sum_{n}(-1)^{n} \operatorname{Rank}\left(C_{n}\right) \\
= \\
\sum_{n}(-1)^{n}(\operatorname{Rank}(\operatorname{Im}(d n)) \\
\quad+\operatorname{Rank}(\operatorname{Im}(d n+1)) \\
\\
\quad+\sum_{n}(-1)^{n} \operatorname{Rank}\left(H_{n}(x)\right)
\end{array} \\
& \Rightarrow \sum_{n}(-1)^{n} \operatorname{Rank}\left(C_{n}\right)=\sum_{n}(-1)^{n} \operatorname{Rank}\left(H_{n}\right)
\end{aligned}
$$

Splitting Lemma. For a SES $0 \rightarrow A \xrightarrow{i} B \xrightarrow{j} C \longrightarrow 0$ of groups the following statements are equivalent:
(a) $B \cong A \not \subset C$
(b) \exists a homomorphism $p: B \rightarrow A$ such that $p o i=i d_{A}$
(C) Ja homomorphism $q: C \rightarrow B$ such that $j \circ q=i d c$.
In particular, if A, B and C are abelian, then the statement in (a) takes the form $A \cong B \oplus C$.
Proposition. If $r: x \rightarrow A$ is a retraction onto a subspace. then $H_{n}(x) \cong H_{n}(A) \oplus H_{n}(x, A)$

Proof. If $i: A \longrightarrow x$ is the inclusion; then $r 0^{\circ}=i d_{A}$ $\Rightarrow \gamma_{*} i_{*}=\left(i d_{H_{n}(A)}\right)$. Thus, the SER

$$
\begin{aligned}
& \text { LES } \\
& O \rightarrow H_{n}(A) \xrightarrow[r_{*}]{i{ }_{i}^{*}} H_{n}(x) \xrightarrow{\stackrel{j *}{\rightarrow}} H_{n}(x, A) \\
& \text { assertion }
\end{aligned}
$$

splits, yielding the assertion
Examples
(a) Suppose 7 a retraction

$$
\begin{aligned}
& \text { (a) Suppose }{ }^{\text {S }}: D^{n} \xrightarrow{n-1} \text { Then } \\
& H_{n-1}\left(D^{n}\right) \cong H_{n-1}\left(S^{n-1}\right) \\
& \oplus H_{n-1}\left(D^{n}, S^{n-1}\right),
\end{aligned}
$$

which is impossible.
(b) Suppose that the mapping cylinder μ_{f} of a map $f: s^{n} \rightarrow s^{\infty}$, of degree $m>1$ retracted onto $S^{n} \subset M_{f}$, then $\exists a$ split SES

$$
0 \rightarrow H_{n}\left(\delta^{n}\right) \rightarrow H_{n}\left(M_{f}\right) \rightarrow H_{n}\left(M_{f}, S^{n}\right)
$$

112

Mayer - Vietoris Sequence
Let $A, B C X$ such that $X=A^{\circ} \cup B^{\circ}$.
Let $C_{n}(A+B)$ be the subgroup of $C_{n}(x)$ consisting of chains that are sums of chains in A and B.

Then $\partial: C_{n}(x) \rightarrow C_{n-1}(x)$ takes $C_{n}(A+B) \xrightarrow{\gamma} C_{n-1}(A+B)$. So \exists a chain complex of $A+B$.
Moreover, $\operatorname{Cn}_{n}(A+B) \longrightarrow C_{n}(x)$ induce isomorphism on homology groups. (Proof of Excision) Thus, the SES of chain complexes

$$
0 \rightarrow C_{n}(A \cap B) \xrightarrow{\varphi} C_{n}(A) \oplus C_{n}(B) C_{n}(A+B) \rightarrow 0 .
$$

where $\varphi(x)=(x,-x)$ and $\varphi(x, y)$ $=x+y$ yields a LES of homology groups called the Mayer - Vietoris sequence.

Theorem: \exists a LES of homology groups given by:

$$
\begin{aligned}
\cdots \rightarrow H_{n}(A \cap B) & \xrightarrow{\Phi} H_{n}(A) \oplus H_{n}(B) \\
& \xrightarrow{\psi} H_{n}(x) \xrightarrow{\partial} H_{n-1}(A \cap B) .
\end{aligned}
$$

where Φ is induced by $\varphi: C_{n}(A \cap B) \rightarrow C_{n}(A) \oplus C_{n}(B)$ given by $\varphi(x)=(x,-x)$ and Ψ is induced by $\psi: C_{n}(A) \oplus$ $C_{n}(B) \rightarrow C_{n}(x)$ 。
Examples (a) Take $x=s^{n}=A \cup B$, where A and B are northern and southern hemispheres with $A \cap B=S^{n-1}$.

Then the reduced $M-V$ sequence yields:

$$
\begin{aligned}
& \widetilde{H}_{i}^{\prime}(A) \oplus \tilde{H}_{i}(B) \rightarrow \widetilde{H}_{i}\left(s^{n}\right) \\
& \rightarrow \tilde{H}_{i-1}\left(s^{n-1}\right)_{0}^{\prime \prime} \\
& \rightarrow \widetilde{H}_{i-1}(A)+\tilde{H}_{i-1}(B) \\
& \Rightarrow \tilde{H}_{i}\left(s^{n}\right) \cong \widetilde{H}_{i-1}\left(s^{n-1}\right)
\end{aligned}
$$

(b) The Klein bottle $K=A \cup B$, where A, B are Mobbius bands glued along their Boundary circles. By the $H-V$ sequence, we have

$$
\begin{aligned}
& \text { we have } \\
& 0 \rightarrow H_{2}(k) \xrightarrow{\partial} H_{1}(A \cap B) \xrightarrow{\Phi} H_{1}(A) \oplus H_{1}(B) \\
& \xrightarrow{\Phi} H_{1}(k) \xrightarrow{\longrightarrow} \\
& 0 \rightarrow H_{2}(k) \xrightarrow{\partial} \underset{\mathbb{Z}}{ } \rightarrow H_{1}(k) \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& H_{2}(K) \cong \operatorname{Im}(\partial)=\operatorname{Ker}(\Phi)=\{0\} \\
& H_{1}(A) \oplus H_{1}(B) / \operatorname{Ker}(\Phi) \cong H_{1}(K) \\
& H_{1}(A) \oplus H_{1}(B) / \operatorname{Im}(\not D) \cong H_{1}(K) \\
& \cong \frac{\langle(1,0),(1,-1)\rangle}{\langle(2,-2)\rangle} \cong \mathbb{Z} \oplus \mathbb{C}_{2}
\end{aligned}
$$

Cohomology
Let X be space and G an abelian group. Consider the chain complex of free abelian group

$$
\cdots \rightarrow C_{n+1}(x) \xrightarrow{\partial_{n+1}} C_{n}(x) \xrightarrow{\partial_{n}} C_{n-1}(x) \rightarrow \cdots
$$

We dualize this complex by considering the cochain groups

$$
C_{n}^{*}(x)=\operatorname{Hom}\left(C_{n}(x), G\right), \forall n \text {. }
$$

Then for each n, ∂_{n} induces a map:

$$
C_{n}^{*}(x) \stackrel{\delta_{n}}{\longleftrightarrow} C_{n-1}^{*}(x)
$$

Since $\partial_{n \cdot \partial_{n+1}=0 \text {, it follows that }}$

$$
\delta_{n+10} \delta_{n}=0
$$

Thus, we obtain a dual chain complex:

$$
\cdots \rightarrow C_{n+1}^{*}(x) \stackrel{\delta_{n+1}}{2^{*}} C_{n}^{*}(x) \stackrel{\delta_{n}}{\leftarrow} C_{n-1}^{*}(x)
$$

an we define the $n^{\text {th }}$ Cohomology group by:

$$
H^{n}(x ; G)=\frac{\operatorname{Ker}(\delta n+1)}{\operatorname{Im}(\delta n)}
$$

Theorem (Universal Coefficient
Theorem) . For each n, \exists a split SES given by

$$
\begin{aligned}
0 \rightarrow E x t\left(H_{n-1}(x), G\right) & \rightarrow H^{n}(x ; G) \\
& \xrightarrow{h} H_{0 m}\left(H_{n}(x), G\right) \\
& \longrightarrow 0
\end{aligned}
$$

hemma 1. Ja natural hom

$$
h: H^{n}(x ; G) \longrightarrow \operatorname{Hom}\left(H_{n}(x) ; G\right) \text {. }
$$

Proof A cohomology class $[\varphi] \in H^{n}(x ; G)$ is represented by a home $\varphi: C_{n}(x) \longrightarrow G$ such that $\delta_{n+1}(\varphi)=0$
$\Rightarrow \varphi_{0} \partial_{n+1}=0 \Rightarrow \varphi \underset{\varphi_{0}}{\operatorname{vanishes}}$ on $\operatorname{Im}\left(\partial_{n+1}\right)$. Thus, $\left.\varphi \mid \operatorname{Kerer}_{10}^{\varphi_{0}} \partial_{n}\right)$ induces a $\bar{\varphi}_{0}: H_{n}(x) \longrightarrow G$. Moreover, as $\varphi \in \operatorname{Im}\left(\delta_{n}\right)$. we have
$\varphi=\delta_{n}(\psi)=\psi\left(\partial_{n}\right)$, and so it follows $\bar{\varphi}_{0}=0$ in $\operatorname{Ker}(\partial n)$.

Thus, my mapping $\varphi \stackrel{h}{\longmapsto} \bar{\varphi}_{0}$. we get a well-defined home. hama 2. h is surjective. Proof. Consider the SES

$$
0 \rightarrow \operatorname{Ker}(\partial n) \rightarrow \operatorname{Cn}(x) \xrightarrow{\partial n} \operatorname{Im}(\partial n)
$$

Note that this splits since $\operatorname{Im}\left(\partial_{n}\right)$ is a free subgroup of $\operatorname{Cn-1}_{n(x)}$.
Thus, \exists a $p: C_{n}(x) \rightarrow \operatorname{ker}(\partial n)$ such that $P l_{\operatorname{Ker}(\partial n)}=I^{\operatorname{Ker}}(\partial n)$.
Composing $\varphi_{0}: \operatorname{Ker}(\partial n) \xrightarrow{\rightarrow} G$ with P, we obtain an extension of $\varphi_{0}=\varphi \mid \operatorname{Ker}(\partial n)$ to

$$
\varphi=\varphi_{0} \circ p: C_{n}(x) \longrightarrow G
$$

Thus, this extends homs $\operatorname{Ker}\left(\gamma_{n}\right) \rightarrow G$ that vanish in $\operatorname{Im}(\partial n+1)$ to homs $C_{n}(x) \rightarrow G$ that vanish in $\operatorname{Im}(\partial n+1)$.
In other words, we obtain a nom.

$$
\text { nom }\left(H_{n}(x) ; G\right) \longrightarrow \operatorname{Ker}(\delta n+1)
$$

Composing this with the quotient map

$$
\operatorname{Ker}(\delta n+1) \longrightarrow H^{n}(x ; G)
$$ yields a how

$$
\operatorname{Hom}\left(H_{n}(x), G\right) \xrightarrow{\alpha} H^{n}(x ; G)
$$

such that $\operatorname{ho\alpha }=i{ }^{\text {gut }} \operatorname{Hom}\left(H_{n}(x) ; G\right)$
$\Rightarrow h$ is surjective and we obtain a split SES.

$$
\begin{aligned}
0 \longrightarrow \operatorname{Ker}(h) & \rightarrow H^{n}(x ; G) \\
& \xrightarrow{h} \operatorname{Hom}\left(H_{n}(x) ; G\right)
\end{aligned}
$$

Defn. A free resolution of an abelian group H is an exact sequence

$$
\begin{aligned}
& \text { exact sequence } \\
& \ldots \rightarrow F_{2} \xrightarrow{f_{2}} F_{1} \xrightarrow{f_{1}} F_{0} \xrightarrow{f_{0}} H \rightarrow 0 \text {, }
\end{aligned}
$$ where each F_{n} is free.

Lemma. Given free resolutions F and F^{\prime} of abelian groups H and H^{\prime}, every hom $\alpha: H \rightarrow H^{\prime}$ can be extended to a chain $\operatorname{map} F$ to F^{\prime} :

$$
\begin{aligned}
& \ldots \rightarrow F_{2} \xrightarrow{f_{2}} F_{1} \xrightarrow{f_{1}} \rightarrow F_{0} \xrightarrow{f_{0}} H \rightarrow 0 \\
& \cdots \rightarrow \mathcal{F}_{2}^{\prime} \xrightarrow[f_{2}^{\prime}]{ }{ }^{\downarrow} F_{1}^{\prime} \xrightarrow[f_{1}^{\prime}]{\downarrow \alpha} F_{0}^{\prime} \xrightarrow[f_{0}]{\downarrow} H^{\prime} \rightarrow 0
\end{aligned}
$$

Furthermore, any two such chain maps extending α are chain homotopic.
(b) For any two free resolutions F and F of H, F canonical isomorphisms $H^{n}(F ; G) \cong H^{n}\left(F^{\prime}, G\right)$ for all n.
Example Every abelian group has a free resolution of the form

$$
0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow H \rightarrow 0
$$

with $F_{i}=0$ for $i>1$.
Take F_{0} to be free abelian group with basis bijective with a chosen gen. set for H. Then 3 a natural ham $f_{0}: F_{0} \longrightarrow H$ sending basis ells \rightarrow chosen generators. Setting $F_{1}=\operatorname{Ker}\left(f_{0}\right)$, we obtain the required free resolution. F.
Note that $H^{n}(F ; G)=0$ for $n>1$.
Defn. We define

$$
\text { Ext }(H ; G):=H^{\prime}(F ; G) \text {. }
$$

Lemma 3 $\cdot \operatorname{Ker}(h) \cong \operatorname{Ext}\left(H_{n-1}(x) ; G\right)$
Proof. Considering the dual of

$$
\begin{aligned}
& 0 \rightarrow \mathrm{Zn}_{n+1} \rightarrow \mathrm{C}_{n+1} \partial \mathrm{Bn}_{n} \rightarrow 0 \\
& \rightarrow \downarrow_{n} \rightarrow{\underset{\mathrm{Z}}{n}}^{\downarrow_{n}} \rightarrow \mathrm{C}_{n-1} \rightarrow 0 \\
& 0 \rightarrow \mathrm{~B}_{n-1} \rightarrow 0
\end{aligned}
$$

yields the following diagram:

$$
\begin{aligned}
& 0 \longleftarrow \mathrm{Zn}^{*} \phi_{0} \longleftarrow{ }^{\phi} \mathrm{C}_{n}^{*} \longleftarrow \mathrm{~B}_{n-1}^{x} \leftarrow 0
\end{aligned}
$$

The rows of (*) are also exact. (dual of a split SES is a split SES) has an associaled LES

$$
\begin{gathered}
\cdots \leftarrow B_{n}^{*} i_{n}^{*} Z_{n}^{*} \rightleftharpoons H^{n}(x ; G) \\
\left({ }^{*}\right) \quad \leftarrow B_{n-1}^{*} \gtrless^{i_{n}^{*}-1} Z_{n-1}^{*} \leftarrow \cdots
\end{gathered}
$$

Here the "boundary map" in* is the dual of the inclusion $i_{n}: B_{n} \longrightarrow Z_{n}$. This is consistent with the manner in which such maps are defined traditionally (via diagram chasing).
Note that $i_{n} *(\phi)=\left.\phi\right|_{B_{n}}$.
The LES breaks into SESS

$$
\begin{aligned}
0 \propto \operatorname{Ker}\left(i_{n}^{*}\right) & \leftarrow H^{n}(x, G) \\
\text { Since } \operatorname{Keker}\left(i_{n-1}^{*}\right) & =\left\{Z_{n} \xrightarrow{\varphi} G|\varphi|_{B_{n}}=0\right\} \\
& =\left\{Z_{n} / B_{n} \longrightarrow G\right\} \\
& =\operatorname{Hom}\left(H_{n}(x), G\right)
\end{aligned}
$$

Also, note that the map $H^{n}(x ; G)$ $\rightarrow \operatorname{Ker}\left(i_{n}^{*}\right)$ becomes h.
Thus, by hemma 2, we have a split SES

$$
0 \rightarrow \operatorname{Coker}\left(i_{n-1}^{*}\right) \longrightarrow H^{n}(x ; G)
$$

$$
\rightarrow \operatorname{Hom}(\operatorname{Hn}(x), G) \rightarrow 0
$$

Finally, it follows the hemma on free resolutions that

$$
\operatorname{Coker}\left(i_{n-1}^{*}\right)=\operatorname{Ext}\left(H_{n-1}(x) ; G\right)
$$

by considering the free resolution

$$
0 \rightarrow \mathrm{Bn}_{n-1} \xrightarrow{\ln -1} \mathrm{Zn-1} \rightarrow \mathrm{Hn}_{n-1}(\mathrm{C}) \rightarrow 0
$$

Proposition.

$$
(a) \operatorname{Ext}\left(H \oplus H^{\prime}, G\right) \cong \operatorname{Ext}(H, G)
$$

(b) $\operatorname{Ext}(H, G)=0$, if H is free
(c) Ext $\left(\mathbb{Z}_{n}, G\right) \cong G / n G$

Proof
(a) Follows from the fact that the direct sum of free resolutions is a free resolution.
(b) When H is free, the free resolution $O \rightarrow H \rightarrow H \rightarrow 0$ yields the assertion.
(c) Consider the dual of the free resolution

$$
0 \rightarrow \mathbb{Z} \xrightarrow{n} \mathbb{Z} \rightarrow \mathbb{Z}_{n} \rightarrow 0
$$

This yields the exact sequence

$$
\begin{aligned}
0 \leftarrow E x t\left(\mathbb{Z}_{n}, G\right) & \leftarrow \frac{G_{1}}{\mathbb{Z}^{*}} \leftarrow^{n} \stackrel{N}{(12}_{\mathbb{Z}^{*}} \\
& \leftarrow \mathbb{Z}_{n}^{*} \leftarrow 0
\end{aligned}
$$

and the assertion follows
Corollary. If $H_{n}(x)$ is finitely generated for all n with torsion component T_{n}, then:

$$
H^{n}(x ; \mathbb{Z}) \cong \frac{H_{n}(x)}{T_{n}} \oplus T_{n-1}
$$

Corollary. If a chain map between chain complexes induces
isomorphisms on homology groups, then it induces isomorphisms on cohomology groups.

Remark. The algebraic machinery of UCT can be generalized to modules over a ring R by considering R-modulus homs (Home) instead of Hom. This will use the fact that submodules of free R-modules are free if R is a PID.

Reduced cohomology. By dualizing the augmented chain complex

$$
\cdots \rightarrow C_{0}(x) \xrightarrow{\varepsilon} \mathbb{Z} \rightarrow 0 \text {. By }
$$

applying UCT, we see that:

$$
\widetilde{H}(x ; G)=\left\{\begin{array}{l}
H^{n}(x ; G), \text { for } n>0 \\
H_{0 m}\left(H_{0}(x), G\right), \text { for } n=0
\end{array}\right.
$$

LES of pair. We dualize the SES $O \rightarrow C_{n}(A) \rightarrow C_{n}(x)$

$$
\xrightarrow{\rightarrow} C_{n}(x, A)
$$

to obtain LES of cohomology groups:

$$
\begin{aligned}
\cdots \rightarrow & H^{n}(x, A ; G) \xrightarrow{j *} H^{n}(x ; G) \\
& \xrightarrow{i \rightarrow} H^{n}(A ; G) \xrightarrow{\delta} H^{n+1}(x, A, G)
\end{aligned}
$$

An analogous sequence- holds for triples. Induced homs. By dualizing the chain maps $f_{\#}: C_{n}(x) \rightarrow C_{n}(y)$ we get the cochain maps $f^{\#}: C^{n}(x) \longrightarrow C^{n}(y)$. The relation $f_{\#} \delta=\partial f_{\#}$ dualizesto $\delta f^{\#}=f^{\#} \delta$, so $f \#$ induces

$$
f^{*}: H^{n}(x ; G) \rightarrow H^{n}(x ; G)
$$

The same reasoning also holds for maps $f:(x, A) \rightarrow(y, B)$

Homotopy invariance. If $f \simeq g:(x, A) \longrightarrow(y, B)$, then $g_{\#-f \#}=\partial P+P \partial$ dualizes to $g^{\#}-f^{\#}=P^{*} \delta+\delta p^{*}$. Thus, we have $f^{*}=g^{*}$.
Excision. As in the case of homology, for subspaces ZCACX with $Z \subset A^{0}$, the inclusion $i:(x-Z, A-Z) \leftrightarrow(x, A)$ induces

$$
i^{*}: H^{n}(X, A ; G) \rightarrow H^{n}(X-Z, A-Z ; G)
$$

for all n.
Mayer-Vietoris. If $X=A^{\circ} \cup B^{\circ}$,
Ja LES

$$
\begin{aligned}
\cdots \rightarrow H^{n}(x ; G) & \xrightarrow{\Psi} \\
& H^{n}(A ; G) \oplus H^{n}(B ; G) \\
& H^{n}(A \cap B ; G) \\
& \rightarrow H^{n+1}(x ; G) \rightarrow \cdots
\end{aligned}
$$

Cup Product
Let $R=\mathbb{Z}, \mathbb{Z}_{n}$ or \mathbb{Q}. For cochains $\varphi \in C^{k}(x ; R)$ and $\psi \in C^{l}(x ; R)$, the cup product $\varphi \cup \psi \in C^{k+l}(x ; R)$ is the cochain whose value on a singular simplex $\sigma: \Delta^{k+l} \rightarrow X$ is given by the formula.

$$
\begin{aligned}
& (\varphi \cup \psi)(\sigma)=\varphi\left(\sigma \mid\left[v_{0}, \ldots, v_{k}\right]\right)\left(\psi \left(\sigma \mid\left[v_{k}, \ldots v_{k+e}\right]\right.\right. \\
& \text { is give duct in } R \text {. }
\end{aligned}
$$

Here the RHS is a product in R.
Lemma: $\delta(\varphi \cup \psi)=\delta \varphi \cup \psi+(-1)^{k} \varphi \cup \delta \varphi$ for $\varphi \in C^{k}(x ; R)$ and $\psi \in C^{l}(x ; R)$.
Proof For $\sigma: \Delta^{k+l+1} \longrightarrow X$, we have:

$$
\begin{array}{r}
(\delta \varphi \cup \varphi)(\sigma)=\sum_{i=0}^{k+1}(-1)^{i} \varphi\left(\sigma l_{\left[v_{0}\right.}, \ldots, \widehat{v}_{i}, \ldots v_{k+1}\right) \\
\psi\left(\sigma \left[\left[v_{k+1}, \ldots, v_{k+l+1]}\right)\right.\right.
\end{array}
$$

$$
\begin{array}{r}
(-1)^{k}(\varphi \cup \delta \varphi)(\sigma)=\sum_{i=k}^{k+l+1}(-1)^{i} \varphi\left(\sigma \mid\left[v_{0}, \ldots, v_{k}\right]\right) \\
\varphi\left(\sigma \mid\left[v_{k}, \ldots, \hat{v}_{i}, \ldots v_{k+l+1}\right]\right)
\end{array}
$$

The last term of first sum cancels in the first term of the second
Since $\partial \sigma=\sum_{i=0}^{k+l+1}(-1) \sigma \mid\left[v_{0}, \ldots, \hat{v}_{i}, \ldots v_{k+l} l+1\right]$, what remains is $\delta(\varphi \cup \varphi)(\sigma)=(\varphi \cup \varphi)(\partial \sigma)$

Remark.
(a) From the lemma, it follows that the cup product of 2 cocycles is a cocycle.
(b) The cup product of a cocycle and a coboundary is a coboundary because
(i) $\varphi \cup \delta \varphi= \pm \delta(\varphi \cup \varphi)$, if $\delta \varphi=0$
(ii) $\delta \varphi \cup \varphi=\delta(\varphi \cup \varphi)$, if $\delta \varphi=0$

Thus, there is an induced cup product map

$$
H^{k}(x ; R) \times H^{l}(x ; R) \xrightarrow{U} H^{k+l}(x ; R)
$$

Example(a)het Mg -closed orientable surface of genus $g \geqslant 1$

The cup product of interest is

$$
H^{\prime}\left(M_{2}\right) \times H^{\prime}\left(M_{2}\right) \rightarrow H^{2}\left(M_{2}\right)
$$

By UCT, $H^{\prime}(M) \cong \operatorname{Hom}\left(H_{1}(M), \mathbb{Z}\right)$
Thus, a basis for $H_{1}\left(M_{2}\right)$ determines a dual basis for $\operatorname{Hom}\left(H_{1}\left(M_{2}\right) ; \mathbb{Z}\right)$.

In particular, a dual α_{i} of a_{i} assigns value 1 to a_{i} and 0 on the remaining basis elements.
Similarly, we have a dual βi for bi
Define a cocycle φ_{i} to have value one on the edges that meet arc αi and zero elsewhere
Similarly, define ψ_{i} counting intersection with bi
Then $\varphi_{1} u \psi_{\text {, takes value } 0 \text { on }}$ all 2-simplices except the one with outer edge b_{1} on the lower right on which it takes 1.
So pu ψ_{1} takes 1 on the 2-chain c formed by the sum of the 2-simplices with signs indicated.

Since $\partial c=0$ and there are no 3 -implies c is not a boundary.
$\Rightarrow[C]$ is a notrivial class in $H_{2}(M)$. Since $\left(\varphi_{1} \cup \Psi_{1}\right)(c)$ generates \mathbb{Z}, it follows that $[C]$ is a generator $H_{2}\left(M_{2}\right) \cong \mathbb{Z}$ and $\left[\varphi_{1} \cup \psi_{1}\right]$ generates $H^{2}\left(M_{2}\right) \cong \mathbb{Z}$.
In general,

$$
\begin{aligned}
& \text { general, } \\
& \varphi_{i} \cup \psi_{j}=\left\{\begin{array}{l}
\varphi_{i} \cup \psi_{j} \neq 0, \quad i=j \\
0, i \neq j
\end{array}\right. \\
&=-\left(\psi_{j} \cup \varphi_{i}\right)
\end{aligned}
$$

(b)

For the non-orientable surface, we use \mathbb{Z}_{2}-coefficients.
As before, for each a_{i} we choose the dual basis $\alpha_{i}\left(H^{\prime}\left(N, \mathbb{Z}_{2}\right)\right.$

$$
\begin{aligned}
& \left.1, \mathbb{Z}_{2}\right) \\
& =\operatorname{Hom}\left(H_{1}(N) ; \mathbb{Z}_{2}\right)
\end{aligned}
$$

As before, $\alpha i \cup \alpha j=\left\{\begin{array}{ll}0 & \text { if } j=i \\ 0 & \text { if } i \neq j\end{array}\right.$.
Proposition. For a map $f: x \rightarrow Y$, the induced maps $f^{*}: H^{n}(V ; R) \longrightarrow H^{n}(x ; R)$ satisfy $f^{*}(\alpha \cup \beta)=f^{*}(\alpha) \cup f^{*}(\beta)$

Proof. It suffices to show that

$$
\begin{aligned}
& f \#(\varphi) \cup f^{*}(\psi)= f^{*}(\varphi \cup \psi) \\
&\left(f \# \varphi \cup f^{\#} \psi\right)(\sigma)=\left(f^{\#} \varphi\right)\left(\sigma \mid\left[v_{0}, \ldots, v_{k}\right]\right) \\
&(f \# \psi)\left(\sigma \mid\left[v_{k}, \ldots, v_{k+l}\right]\right) \\
&= \varphi\left(f \sigma \mid\left[v_{0}, \ldots, v_{k}\right]\right) \\
& \psi\left(f \sigma \mid\left[v_{k}, \ldots, v_{k}+l\right]\right) \\
&=(\varphi \cup \psi)(f \sigma) \\
&= f^{\#}(\varphi \cup \psi)(\sigma) .
\end{aligned}
$$

The absolute and general forms

$$
\begin{aligned}
& \text { are the maps: } \\
& H^{K}(x ; R) \times H^{l}(y, R) \xrightarrow{x} H^{k+l}(x \times y ; R) \\
& H^{K}(x, A ; R) \times H^{l}(y, B ; R) \xrightarrow{x} \xrightarrow\left[H^{K+l}(x \times y, A \times y \cup x \times B ;]{ }\right.
\end{aligned}
$$

R)
defined by $a \times b=P_{1}^{*}(a) \cup P_{2}^{*}(b)$. where $P_{1} \& P_{2}$ are the projections of $X \times Y$ onto X and Y.

Defer (Cohomology ring). The direct sum $\bigoplus_{n \geqslant 0} H^{n}(x ; R):=H^{*}(x ; R)$ comprises finite sums $\sum_{i} \alpha_{i}$ with $\alpha_{i} \in H^{i}(x ; R)$. and the product of two such sums is defined to be $\left(\sum_{i} \alpha_{i}\right)\left(\sum_{j} \beta_{j}\right)$ $=\sum_{i, j} \alpha_{i} \beta_{j}$. Thus, $H^{*}\left(x_{j} R\right)$ is a ring (with identity) if R is a ring (with identity), called the cohomology ring.

Remark. We may regard $H^{*}(x ; R)$ as a graded ring i.e. a ring with decomposition as a sum $\bigoplus_{k \geqslant 0} A_{k}$ of additive subgroups A_{k} such that multiplication takes $A_{k} \times A_{l}$ to A_{k+l}
The simplest graded rings are polynomial rings $R[x]$ and their truncated verision $R[x] /\left(x^{n}\right)$ consisting of polynomials of degree $\leqslant n$.

Example. Net x be the 2 dimensional $c W$-complex obtained by attaching a 2-cell to s^{\prime} by the degree $m \operatorname{map} \quad S^{\prime} \longrightarrow S^{\prime}: Z \longmapsto Z^{m}$.
By UCT and cellular homology, we have:

$$
\begin{aligned}
& H^{n}(x ; \mathbb{Z})= \begin{cases}\mathbb{Z}, & \text { for } n=0 \\
\mathbb{Z} m, & \text { for } n=2\end{cases}
\end{aligned}
$$

\Rightarrow cup product structure is unintersting However, with $\mathbb{Z} m$ coefficients $H^{i}\left(x ; \mathbb{Z}_{m}\right) \cong \mathbb{Z}_{m}$ for $i=0,1,2$.

A generator α of $H^{\prime}(x ; \mathbb{Z} m)$ is rep. by a cocycle φ assigning the value 1 to the edge e, which generates $H_{1}(x)$.
Since φ is a cocycle, we have $\varphi\left(e_{i}\right)+\varphi(e)=\varphi\left(e_{i+1}\right)$, for all i. So we may take $\varphi(e i)=i \in \mathbb{Z} m$, and hence:

$$
(\varphi \cup \varphi)\left(T_{i}\right)=\varphi(e i) \varphi(e)=i
$$

Since $\sum_{i} T_{i}$ is a gen of $H_{2}\left(x_{i} \mathbb{Z} m\right)$ and there are 2 -cocycles taking value 1 on $\sum_{i} T_{i}$, we have

$$
\kappa: H^{2}(x ; \mathbb{Z} m) \rightarrow \operatorname{Hom}\left(\frac{H_{2}(x ; \mathbb{Z} m)}{\mathbb{Z} m}\right)
$$

is an isomorphism.

The cocyde puce takes the value $\sum_{i=0}^{M-1} i$ on $\sum_{i} T_{i}$, and hence rep $\left(\sum_{i=0}^{m-1} i\right) \beta \in H^{2}\left(x ; \mathbb{Z}_{m}\right)$, where β is a gen of $H^{2}\left(x ; \mathbb{Z}_{m}\right)$.
In \mathbb{Z}_{m-1},

$$
\sum_{i=0}^{\mathbb{Z}_{m}, 1} \equiv\left\{\begin{array}{l}
0, \text { if } m \text { is odd } \\
k, \text { if } m=2 k
\end{array}\right.
$$

Thus,

$$
\alpha u \alpha=\alpha^{2}= \begin{cases}0, & \text { if } m \text { is } o d d \\ k \beta, & \text { if } m=2 k \\ 2\end{cases}
$$

In particular, $X=\mathbb{R} P^{2}, \quad \alpha^{2}=\beta$ in $H^{2}\left(\mathbb{R} P^{2} ; \mathbb{Z}_{2}\right)$.

From these examples it follows that

$$
H^{*}\left(\mathbb{R} P^{2} ; \mathbb{Z}_{2}\right)=\frac{\mathbb{Z}_{2}(\alpha)}{\left(\alpha^{3}\right)} .
$$

Theorem. $H^{*}\left(\mathbb{R} P^{n}, \mathbb{Z}_{2}\right) \cong \frac{\mathbb{Z}_{2}[\alpha]}{\left(\alpha^{n+1}\right)}$
and $H^{*}\left(\mathbb{R} P^{\infty} ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}[\alpha]$, where $|\alpha|=1$. In the complex case, $H^{*}\left(\mathbb{C} P^{n} ; \mathbb{Z}\right) \cong \mathbb{Z}[\alpha] /\left(\alpha^{n+1}\right)$ and $H^{*}\left(\operatorname{CP}^{\infty} ; \mathbb{Z}\right) \cong \mathbb{Z}[\alpha]$, where $|\alpha|=2$.

Lemma. (a) The inclusions $i_{\alpha}: X_{\alpha} \hookrightarrow U_{\alpha} X_{\alpha}$ induces a ring isomorphism

$$
H^{*}\left(U_{\alpha} x_{\alpha} ; R\right) \cong \Pi_{\alpha} H^{*}\left(x_{\alpha} ; R\right) \text {. }
$$

with respect to the usual coordinatewise multiplication in a product ring.
(b) Similarly, the inclusions $i_{\alpha}: X_{\alpha} \longrightarrow V_{\alpha} X_{\alpha}$ induces a ring isomorphism

$$
\underset{\pi_{\alpha} \tilde{H}^{*}\left(X_{\alpha} ; R\right) \cong \widetilde{H}^{*}\left(V_{\alpha} x_{\alpha} j R\right)}{\substack{\text { isomorphism }}}
$$

Example. Consider the spaces $\mathbb{C P} P^{2}$ and $S^{2} v G^{4}$. Using homology or simply the additive structure of cohomology one cannot distinguish
between these spaces. However, the cup product structure of these spaces are different.
To see this, note that the square of each element of $H^{2}\left(s^{2} v s^{4} ; \mathbb{Z}\right)$ is zero since \exists a ring isom;

$$
\begin{aligned}
& \text { zero since } \left.\begin{array}{l}
\tilde{H}^{*}\left(s^{2} v s^{4} ; \mathbb{Z}\right) \cong \tilde{H}^{*}\left(s_{j}^{2} \mathbb{Z}\right) \oplus \tilde{H}^{*}\left(s^{4} ; \mathbb{Z}\right)
\end{array}\right)=\text { orator }
\end{aligned}
$$

But the square of a generator of $H^{2}\left(\mathbb{C} \mathbb{P}^{2} ; \mathbb{Z}\right)$ is nonzero by an earlier theorem.
Theorem. Given a commutative ring R, for all $\alpha \in H^{k}(X, A ; R)$ and $\beta \in H^{e}(x, A ; R)$, we have:

$$
\alpha \cup \beta=(-1)^{k l} \beta \cup \alpha \text {. }
$$

Defn. The product map

$$
H^{*}(x ; R) \times H^{*}(y ; R) \xrightarrow{x} H^{*}(x \times y ; R)
$$

given by $a \times b=p_{1}^{*}(a) \times p_{2}^{*}(b)$ is called a cross product or external cup product.
Theorem (Kunneth formula). If X and Y ave $C W$-complexes and $H^{K}(V ; R)$ is a finitely generated free R-module for all k, then

$$
H^{*}(x ; R) \otimes_{R} H^{*}(y ; R) \rightarrow H^{*}(x \times y ; R)
$$ is a ring isom.

Example. $H^{*}\left(\mathbb{R}^{\infty} \times \mathbb{R} P^{\infty} ; \mathbb{Z}_{2}\right)$

$$
\begin{aligned}
& \cong H^{*}\left(\mathbb{R} P^{\infty} ; \mathbb{Z}_{2}\right) \otimes H^{*}\left(\mathbb{R} P^{\infty} ; \mathbb{Z}_{2}\right) \\
& \left.\cong \mathbb{Z}_{2}[\alpha] \otimes \mathbb{Z}_{2}[\beta] \text { (by hm. }\right) \\
& \cong \mathbb{Z}_{2}[\alpha, \beta] .
\end{aligned}
$$

Poincare Duality
Defoe. A manifold of dimension n or an n-manifold is a Hausdorff space in which each point has a neighborhood homeomorphic to \mathbb{R}^{n}.
A compact manifuld is called closed. Examples. $S^{n}, \mathbb{R} P^{n}$, and $\mathbb{C} P^{n}$ are closed manifolds.
Remark The dimension of a manifold M is intrinsically characterized by the fact that for $x \in M, H_{i}(M, M-\{x\}, Z)$ $\neq 0$, only for $i=n$. This is because

$$
\begin{aligned}
H_{i}(M, M-\{x\} ; \mathbb{Z}) \cong & H_{i}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-\{0\} ; \mathbb{Z}\right) \\
& (\text { by } \text { excision }) \\
\cong & \tilde{H}_{i-1}\left(\mathbb{R}^{n}-\{0\} ; \mathbb{Z}\right) \\
& (L E S \text { of pair \&s } \\
\cong & \left.\mathbb{R}^{n} \text { is contractible }\right) \\
\cong & \tilde{H}_{i-1}\left(S^{n-1} ; \mathbb{Z}\right) \\
& \left(\mathbb{R}^{n}-\{0\} \simeq S^{n-1}\right) .
\end{aligned}
$$

Defoe. A local orientation of M at a point $x \in M$ is a choice of generator μ_{x} for $H_{n}(M, M-\{x\})$ which is an infinite cyclic group.
Defy. An orientation of an n-manifold M is a function $x \longmapsto \mu_{x}$ assigning to each $x \in M$ a local orientation $\mu_{x} \in H_{n}(M, M-\{x\})$
satisfying the local consistency
condition that each $x \in M$ has condition that each $x \in M$ has a nbhd $U\left(\approx \mathbb{R}^{n}\right)$ containing an open ball $B>x$ such that all local orientations μ_{y} at points $y \in B$ are images of one generator μ_{B} of $H_{n}(M, M-B) \cong H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-B\right)$ under the natural maps $H_{n}(M, M-B)$

$$
\longrightarrow H_{n}(M, M-y)
$$

Theorem. Every manifold M has a orientable 2 -sheeted covering space \mathbb{M}.

Proof. As a set, let:
$\widetilde{M}=\left\{\mu x \mid x \in M\right.$ and μ_{x} is a local $\}$
The map $\mu_{x} \longrightarrow x$ defines a two-to-on surjection $M \longrightarrow M$.
To topologize \widetilde{M}, given a ball BCM (of finite radius) and a generator $\mu_{B} \in H_{n}(M, M-B)$, let $U\left(\mu_{\beta}\right)=\left\{\begin{array}{l}\mu_{x} \in \widetilde{M} \mid x \in B \text { and }\end{array}\right.$ μ_{x} is the image of μ_{B} under $\left.H_{n}(M, M-B) \rightarrow H_{n}(M, M-x)\right\}$
Then $U\left(M_{B}\right)$ forms a basis for a topology on $r \pi$ and $\tilde{M} \rightarrow M$ is a 2 -sheeted covering space

Remark. One can imbed $\widetilde{M} \rightarrow M$ in a larger covering space $M_{\mathbb{Z}} \rightarrow M$, where:

$$
\mathbb{Z}_{\mathbb{z}} \rightarrow\left\{\alpha_{x} \in H_{n}(M, M-x): x \in M\right\}
$$

As before, we topologize $M \mathbb{Z}$ via the basis $U\left(\alpha_{B}\right)=\left\{\alpha_{x}: x \in B\right\}$ and α_{x} the image of α_{B} $\in H_{n}(M, M-B)$ winder $H_{n}(M, M-B)$ $\longrightarrow H_{n}(M, M-x)$. Then $M_{z} \rightarrow M$ is an infinite sheeted cover. Note that $M_{\mathbb{Z}}=\bigcup_{k=1}^{\infty} M_{K}$, where $M_{0} \approx M$ and :

$$
\begin{gathered}
M_{k}=\left\{k\left(\pm \alpha_{x}\right) \mid \alpha_{x \in} H_{n}(M, M-\{x\})\right. \\
\text { and } x \in M\}
\end{gathered}
$$

Defn. A continuous ma P $M \rightarrow M \geq$ of the form $\alpha \mapsto \alpha x$ $\in H_{n}(M, M-\{x\})$ is called a section of the covering space.
Remark. An orientation is essentially a section $x \longmapsto \mu x$, where $\langle\mu x\rangle=H_{n}(M, M-\{x \xi)$.
Remark. One can generalize the notion of orientation by replacing \mathbb{Z} with R. An R-orientation assigns to each $x \in M$, a generator of $H_{n}(M, M-\{x\}) \cong R$. with the "local condition" where
a generator is an element u such that $R_{u}=R \cdot(\Longleftrightarrow$ u is an unit in R since $1 \in R)$.
Thus Mr generalizes to $M R \rightarrow M$.
Since $H_{n}(M, M-\{x\} ; R) \approx H_{n}(M, M-x)$ $\otimes R$
$M_{R}=\bigcup_{r \in R} M_{r}$, where

$$
M_{r}=\left\{ \pm \mu_{x} \otimes r \in H_{n}(M, M-x ; R)\right.
$$

Theorem. Let M be a closed connected n-manifold. Then:
(a) If M is R-orientable, the $\operatorname{map} H_{n}(M ; R) \rightarrow H_{n}(M, M-x ; R)$ $\approx R$ is an ism $\forall x \in M$.
(b) If M is not R-orientable, the map $H_{n}(M ; R) \rightarrow H_{n}(M, M-x ; R)$ $\approx R$ is infective with image $\{r \in R \mid 2 r=0\} \quad \forall x \in M$.
(c) $H_{i}(M ; R)=0$ for $i>n$.

In particular,

$$
\begin{aligned}
& \text { particular, } \\
& H_{n}(M ; \mathbb{Z}) \cong\left\{\begin{array}{l}
\mathbb{Z}, \text { if } M \text { is orien. } \\
0, \text { otherwise. }
\end{array} .\right.
\end{aligned}
$$

Defy. An element of $H_{n}(M ; R)$ whose image in $H_{n}(M, M-x ; R)$ is a generator for all x is called a fundamental class for M with coefficients in R.

Corollary. A fundamental class exists iffy M is closed and R-orientable.
Proof $(\Longleftrightarrow$ Follows from earlier theorem.
(\Leftrightarrow) Let $\mu \in H_{n}(M ; R)$ be a find. class and let $\mu_{x} \in H_{n}(M, M-x ; R)$ be its image. Then $x \longmapsto \mu_{x}$ is an \mathbb{R}-orientation $(\because$ it factors through $H_{n}(H, M-B ; R)$ for any $B a x$)

Since, $\mu_{x} \neq 0$ only for all x in the image ${ }^{\text {in } M}$ of a cycle rep μ, which is compact.
Remark. Suppose an n-manifold M has a Δ-complex structure. In simplicial homology a fund. class must be rep. by some linear combination $\sum_{i} k_{i} \sigma_{i}$ of n-simplices $\sigma_{i}(o f M)$.
Since this maps to a generator of $H_{n}(M, M-x ; Z)$ for all x in interiors (of σ_{i}), we havel' $k_{i}= \pm 1 \quad \forall i$. Also since $\sum k_{i} \sigma_{i}$ is a cycle, if $\sigma_{i} \sigma_{S}$ share a $(n-1)$ - dim^{l} face, k_{i} determines k_{j}.

Thus, it can be seen $\sum_{k i \sigma_{i}}$ is a cycle iff M is orientable.
With \mathbb{Z}_{2}-coefficients $\sum_{i} \sigma_{i}$ is al ways a cycle.
Corollary. If m is a closed connected n-manifold, then $T_{n-1}= \begin{cases}1 & \text { if } M \text { is orientable } \\ \mathbb{Z}_{2} & \text { if } M \text { is nonovientable. }\end{cases}$
Proof. Apply UCT and the fact that homology groups of H are finitely generated.

Duality Theorem
Defn. For an arbitrary space X an a (coefficient) ring R, we define an R-bilinear cap product map:

$$
\text { ct map: } \begin{aligned}
\cap: C_{x}(x ; R) & \times C^{l}(x ; R) \\
& \longrightarrow C_{k-e}(x ; R)
\end{aligned}
$$

for $k \geqslant l$, by mapping a pair (σ, φ), where $\sigma: \Delta^{K} \longrightarrow x$ and $\varphi \in C^{l}(x ; R)$ to the singular singular $(k-l)$-simplex

$$
\sigma \wedge \varphi=\left.\varphi\left(\sigma \mid\left[v_{0}, \ldots, v_{l}\right]\right) \sigma\right|_{\left[v_{e}, \ldots, v_{k}\right]}
$$

It can be easily verified that:

$$
\partial(\sigma \cap \varphi)=(-1)^{p}(\partial \sigma \cap \varphi-\sigma \cap \delta \varphi)
$$

Thus:
(a) Cap product of a cycle and and cocycle is a cycle.
(b) Cap product of a cycle and coboundary is a boundary.
(c) (a) and (b) \Rightarrow F an induced cap product map:

$$
\begin{aligned}
& \text { ed cap product may } \\
& H_{k}(x ; R) \times H^{l}(x ; R) \xrightarrow{\longrightarrow} H_{k-l}(x ; R) . \\
& \text { in each }
\end{aligned}
$$

which is R-linear in each variable.
(d) \exists induced maps:
(i) $H_{k}(x, A ; R) \times H^{l}(x ; R) \xrightarrow{\cap} H_{k-l}(x, A ; R)$
(ii) $H_{k}(x, A ; R) \times H^{l}(x, A ; R) \xrightarrow{n} H_{k-e}(x ; R)$
(iii) $H_{K}(x, A \cup B ; R) \times H^{l}(x, A ; R)$

$$
\xrightarrow{n} H_{k-l}(x, B ; R) \text {, }
$$

where A and B are open in X.
Lemma. Given a map $f: X \longrightarrow Y$ the relevant induced maps on homology and cohomology fit into the following diagram:

$$
\begin{aligned}
& H_{k}(x) \times H^{l}(x) \xrightarrow{\cap} H_{k-l}(x) \\
& \underset{H_{k}^{*}(y)}{\downarrow_{*}} \stackrel{\uparrow f_{*}}{f^{l}(y)} \xrightarrow{\downarrow f_{*}}
\end{aligned}
$$

Proof. This follows from the fact that $f_{*}(\alpha) \cap \varphi=f_{*}\left(\alpha \cap f^{*}(\varphi)\right)$.
Theorem (Poincare duality). If M is a closed R-orientuble M-mfld with fundamental class $[M] \in H_{n}(M ; R)$, then the map
$D: H^{K}(M ; R) \longrightarrow H_{n-k}\left(M_{i} R\right)$ defined by $D(\alpha)=[M] \cap \alpha$ is an ism. $\forall k$.
$\frac{\text { Examples }}{a_{2}}$.

A fundamental class [M] generating is represented
by the 2-cycle formed by sum of all 4 g 2-simplices with signs indicated.
Let φ_{i} (resp. ψ_{i}) be the cocycle rep α_{i} (resp. βi) assigning 1 to $a_{i}\left(\operatorname{resp} b_{i}\right)$ and 0 to others.

Then $[M] \cap \varphi_{i}=b_{i}$ and $[M] \cap \psi_{i}$ $=-a i$
Thus, b_{i} is the Poincare dual to α_{i} and $-a_{i}$ is the Poincare dual of βi.
In terms of homology, a_{i} and bi are Poincare duals of each other up to sign.

Directed system of groups. Let I be an index set such that for each pair $\alpha, \beta \in I, \exists \gamma \in I$ such that $\alpha \leqslant \gamma$ and $\beta \leqslant \gamma$. such an index set is called a directed set.

Defer. Let $\left\{G_{\alpha}\right\}_{\alpha \in I}$ be a family of abelian groups indexed with a directed set I. Suppose that:
(a) For each $\alpha, \beta \in I$ with $\alpha \leqslant \beta$, F a hoo. $f_{\alpha \beta}: G_{\alpha} \longrightarrow G_{\beta}$ such $f_{\alpha \alpha}=1, \forall \alpha$, and
(b) if $\alpha \leqslant \beta \leqslant \gamma$, then

$$
\text { b) if } f_{\alpha} \gamma=f_{\alpha \beta} \circ f_{\beta \gamma}
$$

Then $\{G \alpha\}_{\alpha \in I}$ is said to form a directed system of groups.

Defoe. Given a directed system of groups, the direct limit group $\lim _{\rightarrow} G_{\alpha}$ is defined as follows:

$$
\lim _{\longrightarrow} G_{\alpha}=\bigoplus_{\alpha \in I} G_{\alpha} /\left\langle\left\langle a-f_{\alpha \beta}(a): a \in G_{\alpha}\right\rangle\right\rangle,
$$

Where we view $G_{\alpha} \subset \oplus_{\alpha} G_{\alpha}$.
Equivalently,
$\xrightarrow{\lim } G_{\alpha}=\bigoplus_{\alpha \in I} G_{\alpha} / \sim$, where
$a \sim b$ if $f_{\alpha \beta}(a)=f_{\beta \gamma}(b)$, for some γ, where $a \in G_{\alpha}$ and $b \in G_{\beta}$.
Remark. If JCI with the property that for each $\alpha \in I, \exists$ $\beta \in J$ with $\alpha \leqslant \beta$, then $\underset{\alpha}{\lim } G \alpha$

$$
=\underset{\beta}{\lim } G \beta
$$

In particular, if I has a maximal element γ, then $\xrightarrow{\lim } G_{\alpha}=G_{\gamma}$.
Prop. If a space X is the union of a directed set of subspaces X_{α} with the property that each compact set in x is contained in some X_{α}, then the natural map $\lim _{\rightarrow} H_{i}\left(x_{\alpha} ; G\right) \rightarrow H_{i}(x ; G)$ is an ism. $\forall i$ and G.

Proof. A cycle in X is represented finite sum of singular simplices.

The union of these is compact in X, and hence lies in some X_{α}. So $\xrightarrow{\lim } H_{i}\left(x_{\alpha} ; G\right) \rightarrow H_{i}(x ; G)$ is surjective.
If a cycle in some x_{α} is a boundary in X, compactness would imply it a boundary in some $X_{\beta \supset X_{\alpha}} \Rightarrow$ cycle rep. Zero in $\xrightarrow{\lim } H_{i}\left(X_{\alpha j} G\right)$

Cohomology with compact support.
Defn. Let $C_{c}^{i}(x ; G)$ be the subgroup of $C^{i}(x ; G)$ consisting of cochains $\varphi: C_{i}(x) \longrightarrow G$ for which \exists a compact set $K=K_{\varphi c} X$ such that φ is zero on all chairs in $X-K$.

Then $\delta \varphi$ is zero on chains in $X-K$, so $\delta \varphi \in C_{c}^{i+1}(x ; G)$. Thus the $C_{c}^{i}(x ; G)$ form a subcomplex of the singular cochain complex of X.
The cohomology groups of $H_{c}^{i}\left(x_{i} G\right)$, are the cohomology groups with compact supports.

Remark. For a space x, let $\left\{k_{\alpha}\right\}$ be the compact subsets of x. Then $\left\{k_{\alpha}\right\}$ form a directed system under inclusion. For each α, consider $H^{i}\left(x, x-K_{\alpha} ; G\right)$. Then, when $K_{\alpha} \subset K_{\beta}, \exists$ a natural how:

$$
H^{i}\left(x, x-K_{\alpha} j G\right) \rightarrow H^{i}\left(x, x-K_{\beta} ; G\right)
$$

Lemma. $H_{c}^{i}(x ; G)=\underset{\alpha}{\lim _{\alpha}} H^{i}\left(x, x-K_{\alpha} ; G\right)$
Proof. Let $[z] \in \xrightarrow[\alpha]{\lim } H^{i}\left(x, x-K_{\alpha} j G\right)$. Then z is a cocycle in $C^{i}\left(x, x-k_{2}, G\right)$ for some α. Moreover, z is zero in $\xrightarrow{\lim } H^{i}\left(x, x-k_{\alpha} ; G\right)$ if
iff $z=\delta y$, for $y \in C^{i-1}\left(x, x-k_{p} ; \sigma\right)$ for $K_{\beta}>K_{\alpha}$.
Remark. If x is compact, then $H_{c}^{i}(x ; G)=H^{i}(x ; G)$.

Example. We wish to compute $\xrightarrow{\lim } H^{i}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-K_{\alpha} j G\right)$
It suffices to consider $\alpha \in \mathbb{Z}^{+}$ and $K_{\alpha}=\overline{B(0 ; \alpha)}$ as every compact set $L \subset \mathbb{R}^{n}$ is contained in K_{α} for some α.
Note frat

$$
\begin{aligned}
& H^{i}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-K_{\alpha} ; G\right) \cong\left\{\begin{array}{l}
G, \text { if } i=n \\
0, \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \text { eover, } \\
& H^{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-K \alpha ; G\right) \rightarrow H^{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-K_{\alpha+1} ; G\right)
\end{aligned}
$$

is an isom.

$$
\Rightarrow H_{c}^{i}\left(\mathbb{R}^{n} ; G\right)= \begin{cases}0, & \text { if } i \neq n \\ G, & \text { if } i=n .\end{cases}
$$

Homotopy Theory
For a space X with basepoint $x_{0} \in X$, define the set $\Pi_{n}\left(x, x_{0}\right)$ to be the homotopy classes of map $f:\left(I^{n}, \partial I^{n}\right) \longrightarrow\left(x, x_{0}\right)$ For $n \geqslant 2$, consider the operation + on $\Pi_{n}\left(x, x_{0}\right)$ defined by:

$$
(f+g)\left(s_{1}, \ldots, s_{n}\right)= \begin{cases}f\left(2 s_{1}, s_{2}, \ldots s_{n}\right), & s_{1} \in\left[0, \frac{1}{2}\right] \\ g\left(2 s_{1},-1, s_{2}, \ldots s_{n}\right), & s_{1} \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Theorem. For $n \geqslant 1, \pi_{n}\left(x, x_{0}\right)$ is an is a group which is abelian for $n \geqslant 2$.
Proof. The operation is clearly well-defined on the homotopy classes by setting $[f]+[g]:=[f+g]$.

We already know that the assertion holds for $n=1$ (as + defines the usual loop concatenation *)
Also, since only the first coordinate is involved in + (even for $n \geqslant 2$), the same arguments as for π_{1} show that $\frac{\pi n}{\ln }\left(x, x_{0}\right)$ is a group. Finally $f+g \simeq g+f$ via the homotopy in the following figures:

$$
\simeq g g^{g} \simeq f
$$

Remark.
(a) The definition for $\pi_{n}\left(x, x_{0}\right)$ extends to the case $n=0$ by taking I^{0} to be a single point and $\partial I^{0}=\phi$. In this case, $\pi_{0}\left(x, x_{0}\right)$ is not generally a group.
(b) Maps $\left(I^{n}, \partial I^{n}\right) \longrightarrow\left(x, x_{0}\right)$ are the same as maps

$$
(I^{n} / \partial I^{n}, \underbrace{\partial I^{n} / \partial I^{n}}_{S_{0}}) \xrightarrow{\text { are the same as }}\left(x, x_{0}\right)
$$

ie $\operatorname{map}\left(s^{n}, s_{0}\right) \longrightarrow(x, \times 0)$, where homotopies are via maps of the same form.

The operation $f+g$ can be visualized as follows in this case:

Theorem. If X is path-connected different choices of basepoint x_{0} produce isomorphic groups $\pi_{n}\left(x, x_{0}\right)$ Proof. Suppose γ is a path in x from x_{0} to x_{1} We define an map:

$$
\text { le define an map. } \operatorname{\varphi }_{\gamma}: \pi_{n}\left(x, x_{0}\right) \xrightarrow{\pi_{n}}\left(x, x_{1}\right)
$$ as follows:

$\varphi_{r}(f)=f_{r}$, where f_{r} is
obtained by:

1. Shrinking domain of f into a smaller concentric cube.

2. Inserting path r on each segment in the shell between the smaller cube and ∂I^{n}.

3. Set $f_{r}=\gamma^{-1} \circ f_{\circ} \gamma$

Furthermore, f_{r} satisfies the following properties.
(a) $(f+g)_{\gamma}=f_{\gamma}+g_{\gamma}$
(b) $f_{\gamma_{\eta}}=\left(f_{\eta}\right)_{\gamma}$

$$
\text { (c) } f_{1}=f
$$

Which (b) \& (c) are apparent, (a) can be realized through the homotopy:

$$
\begin{aligned}
& \text { the homotopy } \\
& h_{t}\left(s_{1}, \ldots, s_{n}\right)=\left\{\begin{array}{l}
(f+0)_{\gamma}\left((2-t) s_{1}, s_{2}, \ldots s_{n}\right), s_{1} \in\left[0, \frac{1}{2}\right] \\
(0+g)\left((2-t) s_{1}+t-1, s_{2}, \ldots s_{n}\right) \\
s_{1} \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
\end{aligned}
$$

Thus, $(f+g)_{r}=(f+0)_{\gamma}+(0+g) \gamma$

$$
=f_{r}+g_{r}
$$

Consequently, (a) - (c) imply that φ_{r} is an isomorphism

Remark $\pi_{1}\left(x, x_{0}\right)$ acts on $\Pi_{n}\left(x, x_{0}\right)$ via $(r, f) \longmapsto f_{r}$
Since $f_{r_{\eta}}=\left(f_{\eta}\right)_{\gamma}$, this induces a ham.

$$
\pi_{1}\left(x, x_{0}\right) \longrightarrow \operatorname{Aut}\left(\pi_{n}\left(x, x_{0}\right)\right)
$$

When $n=1$, this the action of π, on itself by inner automorphisms.
For $n>1$, the action makes $\pi_{n}\left(x, x_{0}\right)$ into a module over the abelian group ring $\mathbb{Z}\left[\pi_{1}\left(x, x_{0}\right)\right]$.
(Note. $Z\left[\pi_{i}\right]=\left\{\sum_{i} r_{i}: n_{i} \in \mathbb{Z}, \gamma_{i} \in \pi_{i}\right.$)
Thus, the module structure on
π_{1} is given by:

$$
\quad f \sum_{i} n_{i} \gamma_{i}=\sum_{i} n_{i} f_{\gamma_{i}} \text { for }
$$

Remark. Tn is a functor. A continuous map $\varphi:\left(x, x_{0}\right) \longrightarrow\left(y, y_{0}\right)$ induces a homomorphism

$$
\varphi_{*}: \pi_{n}\left(x, x_{0}\right) \xrightarrow{1} \pi_{n}\left(x, y_{0}\right)
$$

defined by $\varphi_{*}(f)=\varphi_{0} f$.
Clearly, φ_{*} is a well-defined hon.

Prop. A covering space $p:\left(\tilde{X}, x_{0}\right) \longrightarrow\left(x, x_{0}\right)$ induces an isomorphism $P_{*}: \pi_{n}(\tilde{x}, x 0)$ $\longrightarrow \pi_{n}(x, x 0)$, for $n \geqslant 2$.
Proof. The injectivity follows the same argument as π.
Surjectivity follows from the fact for $n \geqslant 2$, every $\operatorname{map}\left(s^{n}, s_{0}\right) \xrightarrow{f}(x, x 0)$, lifts to a map $\tilde{f}:\left(s^{n}, s_{0}\right) \rightarrow\left(\tilde{x}, r_{0}\right)$ by the lifting crieterion
Corollary. When x has a contractible universal cover, $\pi_{n}\left(x, x_{0}\right)=0$, for $n \geqslant 2$.

Example
Let $T^{n}=\prod_{i=1}^{n} S^{\prime}$. Then $\pi_{i}\left(T^{n}\right)=0$ for $i>1$.
Proposition. For a product $\pi_{\alpha} x_{\alpha}$ of an arbitrary collection of pathconnected spaces X_{α}, \exists an isomorphism:

$$
\frac{\pi_{n}}{}\left(\pi_{\alpha} x_{\alpha}\right) \cong \pi_{\alpha} \pi_{n}\left(x_{\alpha}\right)
$$

for all n.

Defn. The relative homotopy groups of a pair (x, A) is defined to be the set of homotopy classes of maps

$$
\left(I^{n}, \partial I^{n}, J^{n}\right) \longrightarrow\left(X, A, x_{0}\right)
$$

where $J^{n}=\overline{\partial I^{n}-I^{n-1}}$ and I^{n-1} is the face of I^{n} obtained by setting the last coordinate as zero.

Remark.
(a) $\pi_{0}\left(x, A, x_{0}\right)$ is left undefined.
(b) $\pi_{n}\left(x, x_{0}, x_{0}\right)=\pi_{n}\left(x, x_{0}\right)$
(c) $\pi_{n}\left(x, A, x_{0}\right)$ is a group for $n \geqslant 2$ under + which is
abelian for $n \geqslant 3$.
(d) For $n=1, I^{\prime}=[0,1], \quad I^{0}=\{0\}$, and $J^{0}=\{1\}$. Thus, $\pi_{1}\left(x, A, x_{0}\right)$ $=$ Homotopy classes of paths from a varying point in A to a fixed point A. This is not in general a group.
(e) Equivalently, $\pi_{n}\left(x, A, x_{0}\right)$ $=$ Homotopy classes of map $\left(D^{n}, S^{n-1}, s_{0}\right) \rightarrow\left(X, A, x_{0}\right)$.
Lemma (Compression criterion). A map $f:\left(D^{n} \cdot s^{n-1}, s_{0}\right) \longrightarrow(X, A, x 0)$ represents zero in $\pi_{n}(x, A, x 0)$ iff its homotopic rel S^{n-1} to a map whose image is contained
in A.
Proof. $(\Leftrightarrow$ If such a homotopy exists of f to a map g. Then $[f]=[g]$ in $\pi_{n}\left(x, A, x_{0}\right)$ and $[g]=0$ via homotopy obtained by composing g with with the def ret. of D^{n} onto so.
\Longrightarrow Conversely, let $[f]=0$ via $F: D^{n} \times I \rightarrow X$. Then by restricting F to the family of disks (in $D^{n} \times I$) starting with $D^{n} \times\{0\}$ and ending in $D^{n} \times\{1\} \cup S^{n-1} \times I$, we obtain
a homotopy of f onto a map into A siationary on S^{n-1}.
Theorem. Then exists an exact sequence

$$
\begin{aligned}
& \cdots \rightarrow \pi_{n}\left(A, x_{0}\right) \xrightarrow{i *} \pi_{n}\left(x, x_{0}\right) \\
& \xrightarrow{j *} \pi_{n}\left(x, A, x_{0}\right) \\
& \xrightarrow{\partial} \pi_{n-1}\left(A, x_{0}\right) \rightarrow \cdots \\
& \cdots \rightarrow \pi_{0}\left(x, x_{0}\right),
\end{aligned}
$$

Where i and j are inclusions $\left(A, x_{0}\right) \longleftrightarrow\left(x, x_{0}\right)$ and $\left(x, x_{0}, x_{0}\right)$ $\longrightarrow\left(x, A, x_{0}\right)$, and ∂ is obtained By restricting $\left(D^{n}, S^{n-1}\right.$, so $)$ $\longrightarrow\left(x, A, x_{0}\right)$ to $S^{n-1}\left(\right.$ or $\left.\left(I^{n}, \partial I^{n}, J^{n-1}\right) \rightarrow\left(x, A, x_{0}\right)\right)$ to I^{n-1}.
∂ is called the boundary map.
Proof
Exactness at $\pi_{n}(x, B, x 0)$:
$j * i_{*}=0$ as every map
$\left(I^{n}, \partial I^{n}, J^{n-1}\right) \rightarrow\left(A, B, x_{0}\right)$ represents
zero in $\pi_{n}\left(X, A, x_{0}\right)$ by the compression criterion.
Thus, $\operatorname{Im}(i *) \subset \operatorname{Ker}\left(j_{*}\right)$
Suppose that $f \in \operatorname{Ker}(j *)$ i.e.

$$
\begin{aligned}
& \text { Suppose that } f \in \operatorname{ker}(J, B) \\
& f:\left(I^{n}, \partial I^{n}, J^{n-1}\right) \longrightarrow(x, B, x)
\end{aligned}
$$

represents zero in $\pi_{n}\left(x, A, x_{0}\right)$.
Then by $C C, f$ is homotopic rel ∂I^{n} to a map with image in A. Hence, $[f] \in \Pi_{n}(X, B, x 0)$ $\in \operatorname{Im}\left(i_{*}\right)$.

Exactries at $\pi_{n}\left(x, A, x_{0}\right)$.
$\partial_{j *}=0$ since the restriction of $\left(I^{n}, \partial I^{n}, J^{n-1}\right) \rightarrow\left(x, B, x_{0}\right)$ to I^{n-1} has image lying in B, and hence represents zero in $\Pi_{n-1}\left(A, B, x_{0}\right)$. Thus $\operatorname{Im}\left(j_{*}\right)$ $C \operatorname{Ker}(\partial)$.
Conversely let $f \in \operatorname{Ker}(\gamma)$ i.e. the restriction of $f:\left(I^{n}, \partial I^{n}, J^{n-1}\right)$ $\rightarrow\left(X, A, x_{0}\right)$ to I^{n-1} represents zero in $\pi_{n-1}(A, B, x 0)$. Then $\left.f\right|_{I^{n}} \simeq g($ with $\operatorname{Im}(g) \subset B)$ via $F: I^{n-1} \times I \rightarrow A\left(\operatorname{rel} \partial I^{n-1}\right)$.

We can tack F onto f

to get a map $\left(I^{n}, \partial I^{n}, J^{n-1}\right)$ $\longrightarrow(x, B,>0)$ which is homotopic to f as a map $\left(I^{n}, \partial I^{n-1}, J^{n-1}\right)$

$$
\text { to } f(x, A, x 0) \text {. So }[f] \in \operatorname{Im}(j *)
$$

Exactness at $\pi_{n}\left(A, B, x_{0}\right)$. Exercise.
Examples From the LES of the pair $(c x, x)$, we have:

$$
\pi_{n}\left(c x, x, x_{0}\right) \cong \pi_{n}\left(x, x_{0}\right), \forall n \geqslant n
$$

In particular, by taking $n=2$ and $X=X_{G}$ with $\pi_{1}\left(X_{G}\right) \cong G$. any group G is realized as a relative π_{2} group.
Detn. A space $\left(x, x_{0}\right)$ is n-connected if $\pi_{i}\left(x, x_{0}\right)=0$ for $i \leqslant n$.
Remark
(a) O-connected \Longleftrightarrow path-connected
(b) 1 -connected \Longleftrightarrow simply-connected

Proposition. The following conditions are equivalent.
(a) Every map $s^{i} \rightarrow x$ is homotopic to a constant map.
(b) Every $\operatorname{map} s^{i} \rightarrow X$ extends to a map $D^{i+1} \rightarrow X$
(c) $\pi_{i}\left(x, x_{0}\right)=0$ for $x_{0} \in X$.

Thus, X is n-connected if any one of (a) - (c) hold for $i \leqslant n$.

Whitehead Theorem
Theorem. If a map $f: x \rightarrow Y$ Between CW-complexes induces isomorphisms $f_{*}: \pi_{n}(x) \rightarrow \pi_{n}(y)$ for all n, then f is a homotopy equivalence. In case, f is the inclusion of a subcomplex $X \longleftrightarrow Y, X$ is a deformation retract of Y.
Defy. A map $f: x \rightarrow y$ between cw-complexes satisfying $f\left(x^{n}\right) \subset y^{n}$ $\forall n$ is called a cellular map.

Theorem (Cellular Approximation). Every map $f: X \rightarrow Y$ of $C W$ complexes is homotopic to a cellular map. If f is already cellular on a subcomplex $A \subset X$, the homotopy may be taken to be stationary on A.
$\frac{\text { Corollary }}{n<k}$. $\operatorname{Tn}\left(S^{k}\right)=0$, for Proof. By CA Theorem, every basepoint-preserving map
$S^{n} \rightarrow S^{k}$ (o-cell taken as basept) can be homotoped relative to basepoint, to be cellular. Hence, it is constant if $n<k$.

Example: $X=\mathbb{R} P^{2}, \quad Y=S^{2} \times \mathbb{R} P^{\infty}$.

$$
\pi_{1}(x) \cong \pi_{1}(y) \cong \mathbb{Z}^{2} \text {. Since }
$$

their universal covers S^{2} and $S^{2} \times S^{\infty}$ are homotopically equivalent, it follows that $\pi_{n}(x) \cong \pi_{n}(y)$, for $n \geqslant 2$.
But $x \not y y$ since they have non-isomorphic homology groups.

